train_unconditional.py 29.1 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
import shutil
7
from datetime import timedelta
8
from pathlib import Path
anton-l's avatar
anton-l committed
9

10
import accelerate
11
import datasets
12
13
import torch
import torch.nn.functional as F
14
from accelerate import Accelerator, InitProcessGroupKwargs
15
from accelerate.logging import get_logger
16
from accelerate.utils import ProjectConfiguration
anton-l's avatar
anton-l committed
17
from datasets import load_dataset
18
from huggingface_hub import create_repo, upload_folder
19
from packaging import version
20
from torchvision import transforms
anton-l's avatar
anton-l committed
21
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
22

23
24
25
26
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
27
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available
28
from diffusers.utils.import_utils import is_xformers_available
29

anton-l's avatar
anton-l committed
30

31
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
32
check_min_version("0.27.0.dev0")
33

34
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
35
36


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
73
74
75
76
77
78
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
126
127
128
129
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
130
131
132
133
134
135
136
137
138
139
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
195
196
197
198
199
200
201
202
203
204
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
226
    parser.add_argument(
227
228
229
230
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
231
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
232
233
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
234
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
235
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
236
237
238
239
240
241
242
243
244
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
245
    parser.add_argument(
246
        "--checkpoints_total_limit",
247
248
        type=int,
        default=None,
249
        help=("Max number of checkpoints to store."),
250
    )
251
252
253
254
255
256
257
258
259
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
260
261
262
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
263

264
265
266
267
268
269
270
271
272
273
274
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


anton-l's avatar
anton-l committed
275
def main(args):
276
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
277
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
278

Patrick von Platen's avatar
Patrick von Platen committed
279
    kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200))  # a big number for high resolution or big dataset
280
    accelerator = Accelerator(
281
        gradient_accumulation_steps=args.gradient_accumulation_steps,
282
        mixed_precision=args.mixed_precision,
283
        log_with=args.logger,
284
        project_config=accelerator_project_config,
285
        kwargs_handlers=[kwargs],
286
    )
anton-l's avatar
anton-l committed
287

288
289
290
291
292
293
294
295
296
    if args.logger == "tensorboard":
        if not is_tensorboard_available():
            raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")

    elif args.logger == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

297
298
299
300
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
301
302
303
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))
304

305
306
                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))
307

308
309
                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
348
        if args.output_dir is not None:
349
350
            os.makedirs(args.output_dir, exist_ok=True)

351
352
353
354
355
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

356
    # Initialize the model
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    if args.model_config_name_or_path is None:
        model = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        model = UNet2DModel.from_config(config)
384

385
386
387
388
389
390
391
392
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
393
394
            model_cls=UNet2DModel,
            model_config=model.config,
395
396
        )

397
398
399
400
401
402
403
404
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        args.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        args.mixed_precision = accelerator.mixed_precision

405
406
407
408
409
410
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
411
                logger.warning(
412
413
414
415
416
417
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

418
419
    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
420
    if accepts_prediction_type:
421
422
423
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
424
            prediction_type=args.prediction_type,
425
426
427
428
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

429
    # Initialize the optimizer
430
431
432
433
434
435
436
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
437

438
439
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
440

441
442
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
443
444
445
446
447
448
449
450
451
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
452
453
454
455
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
456
    augmentations = transforms.Compose(
457
        [
458
459
460
461
462
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
463
464
        ]
    )
anton-l's avatar
anton-l committed
465

466
    def transform_images(examples):
anton-l's avatar
anton-l committed
467
468
469
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

470
471
    logger.info(f"Dataset size: {len(dataset)}")

472
    dataset.set_transform(transform_images)
473
474
475
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
476

477
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
478
    lr_scheduler = get_scheduler(
479
        args.lr_scheduler,
anton-l's avatar
anton-l committed
480
        optimizer=optimizer,
481
482
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
483
484
    )

485
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
486
487
488
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
489

490
491
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
492

493
494
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
495
496
497
498
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

499
500
501
502
503
504
505
506
507
508
509
510
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
511
    global_step = 0
512
513
    first_epoch = 0

514
    # Potentially load in the weights and states from a previous save
515
516
517
518
519
520
521
522
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
538

539
    # Train!
540
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
541
        model.train()
542
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
543
544
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
545
546
547
548
549
550
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

551
            clean_images = batch["input"].to(weight_dtype)
552
            # Sample noise that we'll add to the images
553
            noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device)
554
            bsz = clean_images.shape[0]
555
556
            # Sample a random timestep for each image
            timesteps = torch.randint(
557
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
558
            ).long()
559

560
            # Add noise to the clean images according to the noise magnitude at each timestep
561
            # (this is the forward diffusion process)
562
563
564
565
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
566
567
                model_output = model(noisy_images, timesteps).sample

568
                if args.prediction_type == "epsilon":
569
                    loss = F.mse_loss(model_output.float(), noise.float())  # this could have different weights!
570
                elif args.prediction_type == "sample":
571
572
573
574
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
575
576
                    # use SNR weighting from distillation paper
                    loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none")
577
                    loss = loss.mean()
578
579
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
580

581
                accelerator.backward(loss)
582

583
584
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
585
586
587
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
588

589
590
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
591
592
                if args.use_ema:
                    ema_model.step(model.parameters())
593
594
595
                progress_bar.update(1)
                global_step += 1

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

618
619
620
621
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

622
623
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
624
                logs["ema_decay"] = ema_model.cur_decay_value
625
626
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
627
        progress_bar.close()
anton-l's avatar
anton-l committed
628

anton-l's avatar
anton-l committed
629
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
630

anton-l's avatar
anton-l committed
631
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
632
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
633
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
634
                unet = accelerator.unwrap_model(model)
635

636
                if args.use_ema:
637
                    ema_model.store(unet.parameters())
638
                    ema_model.copy_to(unet.parameters())
639

640
                pipeline = DDPMPipeline(
641
                    unet=unet,
642
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
643
                )
anton-l's avatar
anton-l committed
644

645
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
646
                # run pipeline in inference (sample random noise and denoise)
647
648
649
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
650
                    num_inference_steps=args.ddpm_num_inference_steps,
651
652
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
653

654
655
656
                if args.use_ema:
                    ema_model.restore(unet.parameters())

anton-l's avatar
anton-l committed
657
658
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
659

660
                if args.logger == "tensorboard":
661
662
663
                    if is_accelerate_version(">=", "0.17.0.dev0"):
                        tracker = accelerator.get_tracker("tensorboard", unwrap=True)
                    else:
664
                        tracker = accelerator.get_tracker("tensorboard")
665
                    tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch)
666
                elif args.logger == "wandb":
667
                    # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
668
669
670
671
                    accelerator.get_tracker("wandb").log(
                        {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch},
                        step=global_step,
                    )
anton-l's avatar
anton-l committed
672

673
674
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
675
676
677
678
679
680
681
682
683
684
685
                unet = accelerator.unwrap_model(model)

                if args.use_ema:
                    ema_model.store(unet.parameters())
                    ema_model.copy_to(unet.parameters())

                pipeline = DDPMPipeline(
                    unet=unet,
                    scheduler=noise_scheduler,
                )

686
                pipeline.save_pretrained(args.output_dir)
687
688
689
690

                if args.use_ema:
                    ema_model.restore(unet.parameters())

691
                if args.push_to_hub:
692
693
694
695
696
697
                    upload_folder(
                        repo_id=repo_id,
                        folder_path=args.output_dir,
                        commit_message=f"Epoch {epoch}",
                        ignore_patterns=["step_*", "epoch_*"],
                    )
anton-l's avatar
anton-l committed
698

699
700
    accelerator.end_training()

anton-l's avatar
anton-l committed
701
702

if __name__ == "__main__":
703
    args = parse_args()
anton-l's avatar
anton-l committed
704
    main(args)