train_unconditional.py 24.2 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
7
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
8
9
10
11

import torch
import torch.nn.functional as F

12
import accelerate
13
14
import datasets
import diffusers
15
from accelerate import Accelerator
16
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
17
from datasets import load_dataset
18
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
19
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
20
from diffusers.training_utils import EMAModel
21
from diffusers.utils import check_min_version
22
from huggingface_hub import HfFolder, Repository, create_repo, whoami
23
from packaging import version
24
from torchvision import transforms
anton-l's avatar
anton-l committed
25
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
26
27


28
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
29
check_min_version("0.13.0.dev0")
30

31
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
117
118
119
120
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
121
122
123
124
125
126
127
128
129
130
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
186
187
188
189
190
191
192
193
194
195
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
217
    parser.add_argument(
218
219
220
221
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
222
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
223
224
225
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
266
def main(args):
267
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
268

269
    accelerator = Accelerator(
270
        gradient_accumulation_steps=args.gradient_accumulation_steps,
271
        mixed_precision=args.mixed_precision,
272
        log_with=args.logger,
273
274
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
331
332
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
333
334
335
336
337
338
339
340
341
342

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Initialize the model
anton-l's avatar
anton-l committed
343
344
    model = UNet2DModel(
        sample_size=args.resolution,
345
346
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
347
348
349
350
351
352
353
354
355
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
356
        ),
anton-l's avatar
anton-l committed
357
358
359
360
361
362
363
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
364
        ),
anton-l's avatar
anton-l committed
365
    )
366

367
368
369
370
371
372
373
374
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
375
376
            model_cls=UNet2DModel,
            model_config=model.config,
377
378
379
380
        )

    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
381
    if accepts_prediction_type:
382
383
384
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
385
            prediction_type=args.prediction_type,
386
387
388
389
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

390
    # Initialize the optimizer
391
392
393
394
395
396
397
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
398

399
400
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
401

402
403
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
404
405
406
407
408
409
410
411
412
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
413
414
415
416
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
417
    augmentations = transforms.Compose(
418
        [
419
420
421
422
423
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
424
425
        ]
    )
anton-l's avatar
anton-l committed
426

427
    def transform_images(examples):
anton-l's avatar
anton-l committed
428
429
430
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

431
432
    logger.info(f"Dataset size: {len(dataset)}")

433
    dataset.set_transform(transform_images)
434
435
436
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
437

438
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
439
    lr_scheduler = get_scheduler(
440
        args.lr_scheduler,
anton-l's avatar
anton-l committed
441
        optimizer=optimizer,
442
443
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
444
445
    )

446
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
447
448
449
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
450

451
452
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
453

454
455
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
456
457
458
459
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

460
461
462
463
464
465
466
467
468
469
470
471
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
472
    global_step = 0
473
474
    first_epoch = 0

475
    # Potentially load in the weights and states from a previous save
476
477
478
479
480
481
482
483
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
499

500
    # Train!
501
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
502
        model.train()
503
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
504
505
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
506
507
508
509
510
511
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

512
            clean_images = batch["input"]
513
514
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
515
            bsz = clean_images.shape[0]
516
517
            # Sample a random timestep for each image
            timesteps = torch.randint(
518
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
519
            ).long()
520

521
            # Add noise to the clean images according to the noise magnitude at each timestep
522
            # (this is the forward diffusion process)
523
524
525
526
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
527
528
                model_output = model(noisy_images, timesteps).sample

529
                if args.prediction_type == "epsilon":
530
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
531
                elif args.prediction_type == "sample":
532
533
534
535
536
537
538
539
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
540
541
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
542

543
                accelerator.backward(loss)
544

545
546
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
547
548
549
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
550

551
552
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
553
554
                if args.use_ema:
                    ema_model.step(model.parameters())
555
556
557
                progress_bar.update(1)
                global_step += 1

558
559
560
561
562
563
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

564
565
566
567
568
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
569
        progress_bar.close()
anton-l's avatar
anton-l committed
570

anton-l's avatar
anton-l committed
571
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
572

anton-l's avatar
anton-l committed
573
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
574
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
575
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
576
                unet = accelerator.unwrap_model(model)
577
578
                if args.use_ema:
                    ema_model.copy_to(unet.parameters())
579
                pipeline = DDPMPipeline(
580
                    unet=unet,
581
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
582
                )
anton-l's avatar
anton-l committed
583

584
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
585
                # run pipeline in inference (sample random noise and denoise)
586
587
588
589
590
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
591

anton-l's avatar
anton-l committed
592
593
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
594
595
596
597
598

                if args.logger == "tensorboard":
                    accelerator.get_tracker("tensorboard").add_images(
                        "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                    )
anton-l's avatar
anton-l committed
599

600
601
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
602
                pipeline.save_pretrained(args.output_dir)
603
                if args.push_to_hub:
604
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
605

606
607
    accelerator.end_training()

anton-l's avatar
anton-l committed
608
609

if __name__ == "__main__":
610
    args = parse_args()
anton-l's avatar
anton-l committed
611
    main(args)