train_unconditional.py 24.9 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
7
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
8

9
import accelerate
10
import datasets
11
12
import torch
import torch.nn.functional as F
13
from accelerate import Accelerator
14
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
15
from datasets import load_dataset
16
from huggingface_hub import HfFolder, Repository, create_repo, whoami
17
from packaging import version
18
from torchvision import transforms
anton-l's avatar
anton-l committed
19
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
20

21
22
23
24
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
25
from diffusers.utils import check_min_version, is_tensorboard_available
26

anton-l's avatar
anton-l committed
27

28
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
29
check_min_version("0.13.0.dev0")
30

31
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
70
71
72
73
74
75
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
123
124
125
126
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
127
128
129
130
131
132
133
134
135
136
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
192
193
194
195
196
197
198
199
200
201
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
223
    parser.add_argument(
224
225
226
227
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
228
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
229
230
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
231
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
232
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
273
def main(args):
274
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
275

276
    accelerator = Accelerator(
277
        gradient_accumulation_steps=args.gradient_accumulation_steps,
278
        mixed_precision=args.mixed_precision,
279
        log_with=args.logger,
280
281
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
338
339
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
340
341
342
343
344
345
346
347
348
349

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Initialize the model
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if args.model_config_name_or_path is None:
        model = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        model = UNet2DModel.from_config(config)
377

378
379
380
381
382
383
384
385
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
386
387
            model_cls=UNet2DModel,
            model_config=model.config,
388
389
390
391
        )

    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
392
    if accepts_prediction_type:
393
394
395
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
396
            prediction_type=args.prediction_type,
397
398
399
400
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

401
    # Initialize the optimizer
402
403
404
405
406
407
408
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
409

410
411
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
412

413
414
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
415
416
417
418
419
420
421
422
423
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
424
425
426
427
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
428
    augmentations = transforms.Compose(
429
        [
430
431
432
433
434
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
435
436
        ]
    )
anton-l's avatar
anton-l committed
437

438
    def transform_images(examples):
anton-l's avatar
anton-l committed
439
440
441
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

442
443
    logger.info(f"Dataset size: {len(dataset)}")

444
    dataset.set_transform(transform_images)
445
446
447
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
448

449
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
450
    lr_scheduler = get_scheduler(
451
        args.lr_scheduler,
anton-l's avatar
anton-l committed
452
        optimizer=optimizer,
453
454
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
455
456
    )

457
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
458
459
460
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
461

462
463
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
464

465
466
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
467
468
469
470
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

471
472
473
474
475
476
477
478
479
480
481
482
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
483
    global_step = 0
484
485
    first_epoch = 0

486
    # Potentially load in the weights and states from a previous save
487
488
489
490
491
492
493
494
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
510

511
    # Train!
512
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
513
        model.train()
514
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
515
516
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
517
518
519
520
521
522
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

523
            clean_images = batch["input"]
524
525
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
526
            bsz = clean_images.shape[0]
527
528
            # Sample a random timestep for each image
            timesteps = torch.randint(
529
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
530
            ).long()
531

532
            # Add noise to the clean images according to the noise magnitude at each timestep
533
            # (this is the forward diffusion process)
534
535
536
537
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
538
539
                model_output = model(noisy_images, timesteps).sample

540
                if args.prediction_type == "epsilon":
541
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
542
                elif args.prediction_type == "sample":
543
544
545
546
547
548
549
550
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
551
552
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
553

554
                accelerator.backward(loss)
555

556
557
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
558
559
560
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
561

562
563
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
564
565
                if args.use_ema:
                    ema_model.step(model.parameters())
566
567
568
                progress_bar.update(1)
                global_step += 1

569
570
571
572
573
574
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

575
576
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
577
                logs["ema_decay"] = ema_model.cur_decay_value
578
579
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
580
        progress_bar.close()
anton-l's avatar
anton-l committed
581

anton-l's avatar
anton-l committed
582
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
583

anton-l's avatar
anton-l committed
584
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
585
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
586
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
587
                unet = accelerator.unwrap_model(model)
588
589
                if args.use_ema:
                    ema_model.copy_to(unet.parameters())
590
                pipeline = DDPMPipeline(
591
                    unet=unet,
592
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
593
                )
anton-l's avatar
anton-l committed
594

595
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
596
                # run pipeline in inference (sample random noise and denoise)
597
598
599
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
600
                    num_inference_steps=args.ddpm_num_inference_steps,
601
602
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
603

anton-l's avatar
anton-l committed
604
605
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
606

607
                if args.logger == "tensorboard" and is_tensorboard_available():
608
609
610
                    accelerator.get_tracker("tensorboard").add_images(
                        "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                    )
anton-l's avatar
anton-l committed
611

612
613
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
614
                pipeline.save_pretrained(args.output_dir)
615
                if args.push_to_hub:
616
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
617

618
619
    accelerator.end_training()

anton-l's avatar
anton-l committed
620
621

if __name__ == "__main__":
622
    args = parse_args()
anton-l's avatar
anton-l committed
623
    main(args)