train_unconditional.py 19.3 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import math
anton-l's avatar
anton-l committed
4
import os
5
6
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
7
8
9
10

import torch
import torch.nn.functional as F

11
from accelerate import Accelerator
12
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
13
from datasets import load_dataset
14
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
15
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
16
from diffusers.training_utils import EMAModel
17
from diffusers.utils import check_min_version
18
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
19
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
20
    CenterCrop,
anton-l's avatar
anton-l committed
21
22
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
23
    Normalize,
anton-l's avatar
anton-l committed
24
25
26
27
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
28
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
29
30


31
32
33
34
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")


35
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
110
111
112
113
114
115
116
117
118
119
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
176
177
178
179
180
181
182
183
184
185
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
207
    parser.add_argument(
208
209
210
211
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
212
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
213
214
215
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
256
def main(args):
257
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
258
    accelerator = Accelerator(
259
        gradient_accumulation_steps=args.gradient_accumulation_steps,
260
        mixed_precision=args.mixed_precision,
261
        log_with=args.logger,
262
263
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
264

anton-l's avatar
anton-l committed
265
266
    model = UNet2DModel(
        sample_size=args.resolution,
267
268
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
269
270
271
272
273
274
275
276
277
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
278
        ),
anton-l's avatar
anton-l committed
279
280
281
282
283
284
285
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
286
        ),
anton-l's avatar
anton-l committed
287
    )
288
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
289

290
    if accepts_prediction_type:
291
292
293
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
294
            prediction_type=args.prediction_type,
295
296
297
298
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

299
300
301
302
303
304
305
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
306
307
308

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
309
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
310
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
311
312
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
313
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
314
315
        ]
    )
316
317
318
319
320
321
322
323
324
325

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
326
327
328
329
330

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

331
332
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
333
    dataset.set_transform(transforms)
334
335
336
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
337

anton-l's avatar
anton-l committed
338
    lr_scheduler = get_scheduler(
339
        args.lr_scheduler,
anton-l's avatar
anton-l committed
340
        optimizer=optimizer,
341
342
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
343
344
345
346
347
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
348
    accelerator.register_for_checkpointing(lr_scheduler)
anton-l's avatar
anton-l committed
349

350
351
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

352
353
354
355
356
357
    ema_model = EMAModel(
        accelerator.unwrap_model(model),
        inv_gamma=args.ema_inv_gamma,
        power=args.ema_power,
        max_value=args.ema_max_decay,
    )
anton-l's avatar
anton-l committed
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
375

376
377
378
379
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
380
    global_step = 0
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    first_epoch = 0

    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
401
        model.train()
402
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
403
404
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
405
406
407
408
409
410
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

411
            clean_images = batch["input"]
412
413
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
414
            bsz = clean_images.shape[0]
415
416
            # Sample a random timestep for each image
            timesteps = torch.randint(
417
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
418
            ).long()
419

420
            # Add noise to the clean images according to the noise magnitude at each timestep
421
            # (this is the forward diffusion process)
422
423
424
425
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
426
427
                model_output = model(noisy_images, timesteps).sample

428
                if args.prediction_type == "epsilon":
429
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
430
                elif args.prediction_type == "sample":
431
432
433
434
435
436
437
438
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
439
440
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
441

442
                accelerator.backward(loss)
443

444
445
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
446
447
                optimizer.step()
                lr_scheduler.step()
448
449
                if args.use_ema:
                    ema_model.step(model)
450
                optimizer.zero_grad()
451

452
453
454
455
456
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

457
458
459
460
461
462
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

463
464
465
466
467
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
468
        progress_bar.close()
anton-l's avatar
anton-l committed
469

anton-l's avatar
anton-l committed
470
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
471

anton-l's avatar
anton-l committed
472
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
473
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
474
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
475
476
477
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
478
                )
anton-l's avatar
anton-l committed
479

480
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
481
                # run pipeline in inference (sample random noise and denoise)
482
483
484
485
486
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
487

anton-l's avatar
anton-l committed
488
489
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
490
491
492
493
494

                if args.logger == "tensorboard":
                    accelerator.get_tracker("tensorboard").add_images(
                        "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                    )
anton-l's avatar
anton-l committed
495

496
497
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
498
                pipeline.save_pretrained(args.output_dir)
499
                if args.push_to_hub:
500
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
501
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
502

503
504
    accelerator.end_training()

anton-l's avatar
anton-l committed
505
506

if __name__ == "__main__":
507
    args = parse_args()
anton-l's avatar
anton-l committed
508
    main(args)