train_unconditional.py 18.8 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import math
anton-l's avatar
anton-l committed
4
import os
5
6
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
7
8
9
10

import torch
import torch.nn.functional as F

11
from accelerate import Accelerator
12
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
13
from datasets import load_dataset
14
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
15
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
16
from diffusers.training_utils import EMAModel
17
from diffusers.utils import check_min_version
18
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
19
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
20
    CenterCrop,
anton-l's avatar
anton-l committed
21
22
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
23
    Normalize,
anton-l's avatar
anton-l committed
24
25
26
27
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
28
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
29
30


31
32
33
34
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")


35
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
110
111
112
113
114
115
116
117
118
119
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
197
    parser.add_argument(
198
199
200
201
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
202
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
203
204
205
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
246
def main(args):
247
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
248
    accelerator = Accelerator(
249
        gradient_accumulation_steps=args.gradient_accumulation_steps,
250
251
252
253
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
254

anton-l's avatar
anton-l committed
255
256
    model = UNet2DModel(
        sample_size=args.resolution,
257
258
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
259
260
261
262
263
264
265
266
267
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
268
        ),
anton-l's avatar
anton-l committed
269
270
271
272
273
274
275
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
276
        ),
anton-l's avatar
anton-l committed
277
    )
278
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
279

280
    if accepts_prediction_type:
281
282
283
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
284
            prediction_type=args.prediction_type,
285
286
287
288
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

289
290
291
292
293
294
295
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
296
297
298

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
299
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
300
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
301
302
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
303
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
304
305
        ]
    )
306
307
308
309
310
311
312
313
314
315

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
316
317
318
319
320

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

321
322
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
323
    dataset.set_transform(transforms)
324
325
326
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
327

anton-l's avatar
anton-l committed
328
    lr_scheduler = get_scheduler(
329
        args.lr_scheduler,
anton-l's avatar
anton-l committed
330
        optimizer=optimizer,
331
        num_warmup_steps=args.lr_warmup_steps,
anton-l's avatar
anton-l committed
332
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
anton-l's avatar
anton-l committed
333
334
335
336
337
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
338
    accelerator.register_for_checkpointing(lr_scheduler)
anton-l's avatar
anton-l committed
339

340
341
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

342
343
344
345
346
347
    ema_model = EMAModel(
        accelerator.unwrap_model(model),
        inv_gamma=args.ema_inv_gamma,
        power=args.ema_power,
        max_value=args.ema_max_decay,
    )
anton-l's avatar
anton-l committed
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
365

366
367
368
369
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
370
    global_step = 0
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    first_epoch = 0

    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
391
        model.train()
392
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
393
394
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
395
396
397
398
399
400
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

401
            clean_images = batch["input"]
402
403
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
404
            bsz = clean_images.shape[0]
405
406
            # Sample a random timestep for each image
            timesteps = torch.randint(
407
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
408
            ).long()
409

410
            # Add noise to the clean images according to the noise magnitude at each timestep
411
            # (this is the forward diffusion process)
412
413
414
415
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
416
417
                model_output = model(noisy_images, timesteps).sample

418
                if args.prediction_type == "epsilon":
419
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
420
                elif args.prediction_type == "sample":
421
422
423
424
425
426
427
428
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
429
430
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
431

432
                accelerator.backward(loss)
433

434
435
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
436
437
                optimizer.step()
                lr_scheduler.step()
438
439
                if args.use_ema:
                    ema_model.step(model)
440
                optimizer.zero_grad()
441

442
443
444
445
446
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

447
448
449
450
451
452
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

453
454
455
456
457
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
458
        progress_bar.close()
anton-l's avatar
anton-l committed
459

anton-l's avatar
anton-l committed
460
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
461

anton-l's avatar
anton-l committed
462
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
463
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
464
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
465
466
467
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
468
                )
anton-l's avatar
anton-l committed
469

470
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
471
                # run pipeline in inference (sample random noise and denoise)
472
473
474
475
476
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
477

anton-l's avatar
anton-l committed
478
479
480
481
482
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )
anton-l's avatar
anton-l committed
483

484
485
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
486
                pipeline.save_pretrained(args.output_dir)
487
                if args.push_to_hub:
488
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
489
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
490

491
492
    accelerator.end_training()

anton-l's avatar
anton-l committed
493
494

if __name__ == "__main__":
495
    args = parse_args()
anton-l's avatar
anton-l committed
496
    main(args)