"examples/vscode:/vscode.git/clone" did not exist on "e06e63d5d578d0ef7af1d112d44228109de38a1b"
unet_2d_blocks.py 118 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from .activations import get_activation
23
from .attention import AdaGroupNorm
24
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
25
from .dual_transformer_2d import DualTransformer2DModel
26
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
27
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
28
29


30
31
32
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


33
34
35
36
37
38
39
40
41
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
42
    transformer_layers_per_block=1,
43
    num_attention_heads=None,
44
    resnet_groups=None,
45
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
46
    downsample_padding=None,
47
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
48
    use_linear_projection=False,
49
    only_cross_attention=False,
50
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
51
    resnet_time_scale_shift="default",
52
53
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
54
    cross_attention_norm=None,
55
    attention_head_dim=None,
56
    downsample_type=None,
57
):
58
59
60
61
62
63
64
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
68
69
70
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
75
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
76
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
77
78
79
80
81
82
83
84
85
86
87
88
89
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
90
91
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
92
        )
Patrick von Platen's avatar
Patrick von Platen committed
93
    elif down_block_type == "AttnDownBlock2D":
94
95
96
97
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
98
        return AttnDownBlock2D(
99
100
101
102
103
104
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
105
            resnet_groups=resnet_groups,
106
            downsample_padding=downsample_padding,
107
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
108
            resnet_time_scale_shift=resnet_time_scale_shift,
109
            downsample_type=downsample_type,
110
        )
Patrick von Platen's avatar
Patrick von Platen committed
111
    elif down_block_type == "CrossAttnDownBlock2D":
112
        if cross_attention_dim is None:
113
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
114
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
115
            num_layers=num_layers,
116
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
123
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
124
            downsample_padding=downsample_padding,
125
            cross_attention_dim=cross_attention_dim,
126
            num_attention_heads=num_attention_heads,
127
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
128
            use_linear_projection=use_linear_projection,
129
            only_cross_attention=only_cross_attention,
130
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
146
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
147
            resnet_time_scale_shift=resnet_time_scale_shift,
148
149
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
150
            only_cross_attention=only_cross_attention,
151
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
152
        )
Patrick von Platen's avatar
Patrick von Platen committed
153
154
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
155
156
157
158
159
160
161
162
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
163
            resnet_time_scale_shift=resnet_time_scale_shift,
164
        )
Patrick von Platen's avatar
Patrick von Platen committed
165
166
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
167
168
169
170
171
172
173
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
174
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
175
            resnet_time_scale_shift=resnet_time_scale_shift,
176
        )
177
178
179
180
181
182
183
184
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
185
            resnet_groups=resnet_groups,
186
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
187
            resnet_time_scale_shift=resnet_time_scale_shift,
188
        )
Will Berman's avatar
Will Berman committed
189
190
191
192
193
194
195
196
197
198
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
199
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
200
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
201
        )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
222
            attention_head_dim=attention_head_dim,
223
224
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
225
    raise ValueError(f"{down_block_type} does not exist.")
226
227
228
229
230
231


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
232
233
    out_channels,
    prev_output_channel,
234
235
236
237
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
238
    transformer_layers_per_block=1,
239
    num_attention_heads=None,
240
    resnet_groups=None,
241
    cross_attention_dim=None,
242
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
243
    use_linear_projection=False,
244
    only_cross_attention=False,
245
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
246
    resnet_time_scale_shift="default",
247
248
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
249
    cross_attention_norm=None,
250
    attention_head_dim=None,
251
    upsample_type=None,
252
):
253
254
255
256
257
258
259
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
263
264
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
265
266
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
267
268
269
270
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
271
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
286
287
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
288
        )
Patrick von Platen's avatar
Patrick von Platen committed
289
    elif up_block_type == "CrossAttnUpBlock2D":
290
291
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
292
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
293
            num_layers=num_layers,
294
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
298
299
300
301
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
302
            resnet_groups=resnet_groups,
303
            cross_attention_dim=cross_attention_dim,
304
            num_attention_heads=num_attention_heads,
305
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
306
            use_linear_projection=use_linear_projection,
307
            only_cross_attention=only_cross_attention,
308
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
325
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
326
            resnet_time_scale_shift=resnet_time_scale_shift,
327
328
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
329
            only_cross_attention=only_cross_attention,
330
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
331
        )
Patrick von Platen's avatar
Patrick von Platen committed
332
    elif up_block_type == "AttnUpBlock2D":
333
334
335
336
337
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
338
        return AttnUpBlock2D(
339
340
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
341
342
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
343
344
345
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
346
            resnet_groups=resnet_groups,
347
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
348
            resnet_time_scale_shift=resnet_time_scale_shift,
349
            upsample_type=upsample_type,
350
        )
Patrick von Platen's avatar
Patrick von Platen committed
351
352
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
353
354
355
356
357
358
359
360
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
361
            resnet_time_scale_shift=resnet_time_scale_shift,
362
        )
Patrick von Platen's avatar
Patrick von Platen committed
363
364
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
365
366
367
368
369
370
371
372
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
373
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
374
            resnet_time_scale_shift=resnet_time_scale_shift,
375
        )
376
377
378
379
380
381
382
383
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
384
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
385
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
386
            temb_channels=temb_channels,
387
        )
Will Berman's avatar
Will Berman committed
388
389
390
391
392
393
394
395
396
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
397
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
398
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
399
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
400
        )
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
421
            attention_head_dim=attention_head_dim,
422
423
        )

424
    raise ValueError(f"{up_block_type} does not exist.")
425
426


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
class AutoencoderTinyBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
449
450
451
452
453
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
454
        dropout: float = 0.0,
455
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
456
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
457
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
458
459
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
460
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
461
        add_attention: bool = True,
462
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
463
464
465
        output_scale_factor=1.0,
    ):
        super().__init__()
466
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
467
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
468

469
470
        # there is always at least one resnet
        resnets = [
471
            ResnetBlock2D(
472
473
474
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
475
                eps=resnet_eps,
476
477
478
479
480
481
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
482
            )
483
484
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
485

486
487
488
489
490
491
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

492
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
493
494
            if self.add_attention:
                attentions.append(
495
                    Attention(
Will Berman's avatar
Will Berman committed
496
                        in_channels,
497
498
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
499
500
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
YiYi Xu's avatar
YiYi Xu committed
501
502
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
503
504
505
506
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
507
                    )
508
                )
Will Berman's avatar
Will Berman committed
509
510
511
            else:
                attentions.append(None)

512
            resnets.append(
513
                ResnetBlock2D(
514
515
516
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
517
                    eps=resnet_eps,
518
519
520
521
522
523
524
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
525
526
            )

527
528
529
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
530
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
531
        hidden_states = self.resnets[0](hidden_states, temb)
532
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
533
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
534
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
535
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
536

537
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
538

539

Patrick von Platen's avatar
Patrick von Platen committed
540
541
542
543
544
545
546
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
547
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
548
549
550
551
552
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
553
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
554
555
        output_scale_factor=1.0,
        cross_attention_dim=1280,
556
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
557
        use_linear_projection=False,
558
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
    ):
        super().__init__()

562
        self.has_cross_attention = True
563
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
568
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
584
585
586
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
587
588
                        num_attention_heads,
                        in_channels // num_attention_heads,
589
                        in_channels=in_channels,
590
                        num_layers=transformer_layers_per_block,
591
592
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
593
                        use_linear_projection=use_linear_projection,
594
                        upcast_attention=upcast_attention,
595
596
597
598
599
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
600
601
                        num_attention_heads,
                        in_channels // num_attention_heads,
602
603
604
605
606
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
607
608
                )
            resnets.append(
609
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

626
    def forward(
627
628
629
630
631
632
633
634
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
635
636
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
637
638
639
640
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
641
642
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
643
644
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
662
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
663
664
        output_scale_factor=1.0,
        cross_attention_dim=1280,
665
        skip_time_act=False,
666
        only_cross_attention=False,
667
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
668
669
670
671
672
    ):
        super().__init__()

        self.has_cross_attention = True

673
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
674
675
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

676
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
691
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
692
693
694
695
696
            )
        ]
        attentions = []

        for _ in range(num_layers):
697
698
699
700
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
701
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
702
                Attention(
Will Berman's avatar
Will Berman committed
703
704
705
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
706
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
707
708
709
710
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
711
                    only_cross_attention=only_cross_attention,
712
                    cross_attention_norm=cross_attention_norm,
713
                    processor=processor,
Will Berman's avatar
Will Berman committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
728
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
729
730
731
732
733
734
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

735
    def forward(
736
737
738
739
740
741
742
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
743
744
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
745
746
747
748
749
750
751
752
753
754
755
756

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
757
758
759
760
761
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
762
                encoder_hidden_states=encoder_hidden_states,
763
                attention_mask=mask,
764
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
765
766
767
            )

            # resnet
Patrick von Platen's avatar
Patrick von Platen committed
768
769
770
771
772
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
773
class AttnDownBlock2D(nn.Module):
774
775
776
777
778
779
780
781
782
783
784
785
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
786
        attention_head_dim=1,
787
        output_scale_factor=1.0,
788
        downsample_padding=1,
789
        downsample_type="conv",
790
791
792
793
    ):
        super().__init__()
        resnets = []
        attentions = []
794
        self.downsample_type = downsample_type
795

796
797
798
799
800
801
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

802
803
804
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
805
                ResnetBlock2D(
806
807
808
809
810
811
812
813
814
815
816
817
818
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
819
                Attention(
820
                    out_channels,
821
822
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
823
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
824
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
825
                    norm_num_groups=resnet_groups,
826
827
828
829
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
830
831
832
833
834
835
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

836
        if downsample_type == "conv":
837
            self.downsamplers = nn.ModuleList(
838
839
                [
                    Downsample2D(
840
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
841
842
                    )
                ]
843
            )
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
862
863
864
        else:
            self.downsamplers = None

865
    def forward(self, hidden_states, temb=None, upsample_size=None):
866
867
868
869
870
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
871
            output_states = output_states + (hidden_states,)
872
873
874

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
875
876
877
878
                if self.downsample_type == "resnet":
                    hidden_states = downsampler(hidden_states, temb=temb)
                else:
                    hidden_states = downsampler(hidden_states)
879
880
881
882
883
884

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
885
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
886
887
888
889
890
891
892
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
893
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
894
895
896
897
898
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
899
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
900
901
902
903
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
904
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
905
        use_linear_projection=False,
906
        only_cross_attention=False,
907
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
908
909
910
911
912
    ):
        super().__init__()
        resnets = []
        attentions = []

913
        self.has_cross_attention = True
914
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
915
916
917
918

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
919
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
920
921
922
923
924
925
926
927
928
929
930
931
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
932
933
934
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
935
936
                        num_attention_heads,
                        out_channels // num_attention_heads,
937
                        in_channels=out_channels,
938
                        num_layers=transformer_layers_per_block,
939
940
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
941
                        use_linear_projection=use_linear_projection,
942
                        only_cross_attention=only_cross_attention,
943
                        upcast_attention=upcast_attention,
944
945
946
947
948
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
949
950
                        num_attention_heads,
                        out_channels // num_attention_heads,
951
952
953
954
955
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
956
957
958
959
960
961
962
963
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
964
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
965
966
967
968
969
970
                    )
                ]
            )
        else:
            self.downsamplers = None

971
972
        self.gradient_checkpointing = False

973
    def forward(
974
975
976
977
978
979
980
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
981
        additional_residuals=None,
982
    ):
Patrick von Platen's avatar
Patrick von Platen committed
983
984
        output_states = ()

Will Berman's avatar
Will Berman committed
985
986
987
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
988
989
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
990
                def create_custom_forward(module, return_dict=None):
991
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
992
993
994
995
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
996
997
998

                    return custom_forward

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
1017
1018
            else:
                hidden_states = resnet(hidden_states, temb)
1019
1020
1021
1022
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1023
1024
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1025
1026
                    return_dict=False,
                )[0]
1027

Will Berman's avatar
Will Berman committed
1028
1029
1030
1031
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1032
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1033
1034
1035
1036
1037

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1038
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1039
1040
1041
1042

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1043
class DownBlock2D(nn.Module):
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1058
        downsample_padding=1,
1059
1060
1061
1062
1063
1064
1065
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1066
                ResnetBlock2D(
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1084
1085
                [
                    Downsample2D(
1086
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1087
1088
                    )
                ]
1089
1090
1091
1092
            )
        else:
            self.downsamplers = None

1093
1094
        self.gradient_checkpointing = False

1095
1096
1097
1098
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
1099
1100
1101
1102
1103
1104
1105
1106
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1107
1108
1109
1110
1111
1112
1113
1114
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1115
1116
1117
            else:
                hidden_states = resnet(hidden_states, temb)

1118
            output_states = output_states + (hidden_states,)
1119
1120
1121
1122
1123

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1124
            output_states = output_states + (hidden_states,)
1125
1126
1127
1128

        return hidden_states, output_states


1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1151
                ResnetBlock2D(
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1171
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1201
        attention_head_dim=1,
1202
1203
1204
1205
1206
1207
1208
1209
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1210
1211
1212
1213
1214
1215
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1216
1217
1218
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1219
                ResnetBlock2D(
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1233
                Attention(
1234
                    out_channels,
1235
1236
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1237
1238
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1239
                    norm_num_groups=resnet_groups,
1240
1241
1242
1243
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1254
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1273
class AttnSkipDownBlock2D(nn.Module):
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1285
        attention_head_dim=1,
1286
1287
1288
1289
1290
1291
1292
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1293
1294
1295
1296
1297
1298
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1299
1300
1301
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1302
                ResnetBlock2D(
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1317
                Attention(
1318
                    out_channels,
1319
1320
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1321
1322
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1323
1324
1325
1326
1327
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1328
1329
1330
1331
                )
            )

        if add_downsample:
1332
            self.resnet_down = ResnetBlock2D(
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1343
                use_in_shortcut=True,
1344
1345
1346
                down=True,
                kernel="fir",
            )
1347
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1374
class SkipDownBlock2D(nn.Module):
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1396
                ResnetBlock2D(
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1412
            self.resnet_down = ResnetBlock2D(
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1423
                use_in_shortcut=True,
1424
1425
1426
                down=True,
                kernel="fir",
            )
1427
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1468
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1487
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1507
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1529
1530
1531
1532
1533
1534
1535
1536
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1537
1538
1539
            else:
                hidden_states = resnet(hidden_states, temb)

1540
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1541
1542
1543
1544
1545

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1546
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1564
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1565
1566
1567
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1568
        skip_time_act=False,
1569
        only_cross_attention=False,
1570
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1571
1572
1573
1574
1575
1576
1577
1578
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1579
1580
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1596
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1597
1598
                )
            )
1599
1600
1601
1602
1603

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1604
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1605
                Attention(
Will Berman's avatar
Will Berman committed
1606
1607
1608
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1609
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1610
1611
1612
1613
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1614
                    only_cross_attention=only_cross_attention,
1615
                    cross_attention_norm=cross_attention_norm,
1616
                    processor=processor,
Will Berman's avatar
Will Berman committed
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1636
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1646
    def forward(
1647
1648
1649
1650
1651
1652
1653
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1654
    ):
Will Berman's avatar
Will Berman committed
1655
        output_states = ()
1656
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1657

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1669
        for resnet, attn in zip(self.resnets, self.attentions):
1670
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
1686
                    mask,
1687
1688
1689
1690
1691
1692
1693
1694
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1695
                    attention_mask=mask,
1696
1697
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1698

1699
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1700
1701
1702
1703
1704

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1705
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1706
1707
1708
1709

        return hidden_states, output_states


1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1768
1769
1770
1771
1772
1773
1774
1775
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
            else:
                hidden_states = resnet(hidden_states, temb)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1799
        attention_head_dim: int = 64,
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1832
1833
                    out_channels // attention_head_dim,
                    attention_head_dim,
1834
1835
1836
1837
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1838
                    cross_attention_norm="layer_norm",
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1854
1855
1856
1857
1858
1859
1860
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
    ):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )
1893
1894
1895
1896
1897
1898
1899
1900
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1901
                    encoder_attention_mask=encoder_attention_mask,
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1916
class AttnUpBlock2D(nn.Module):
1917
1918
1919
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1920
1921
        prev_output_channel: int,
        out_channels: int,
1922
1923
1924
1925
1926
1927
1928
1929
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1930
        attention_head_dim=1,
1931
        output_scale_factor=1.0,
1932
        upsample_type="conv",
1933
1934
1935
1936
1937
    ):
        super().__init__()
        resnets = []
        attentions = []

1938
1939
        self.upsample_type = upsample_type

1940
1941
1942
1943
1944
1945
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1946
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1947
1948
1949
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1950
            resnets.append(
1951
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1952
1953
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1965
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
1966
                    out_channels,
1967
1968
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1969
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1970
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1971
                    norm_num_groups=resnet_groups,
1972
1973
1974
1975
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1976
1977
1978
1979
1980
1981
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1982
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
1983
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2002
2003
2004
        else:
            self.upsamplers = None

2005
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2017
2018
2019
2020
                if self.upsample_type == "resnet":
                    hidden_states = upsampler(hidden_states, temb=temb)
                else:
                    hidden_states = upsampler(hidden_states)
2021
2022
2023
2024

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2025
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2026
2027
2028
2029
2030
2031
2032
2033
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
2034
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2035
2036
2037
2038
2039
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2040
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2041
2042
2043
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2044
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2045
        use_linear_projection=False,
2046
        only_cross_attention=False,
2047
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
2048
2049
2050
2051
2052
    ):
        super().__init__()
        resnets = []
        attentions = []

2053
        self.has_cross_attention = True
2054
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2055
2056
2057
2058
2059
2060

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2061
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2074
2075
2076
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2077
2078
                        num_attention_heads,
                        out_channels // num_attention_heads,
2079
                        in_channels=out_channels,
2080
                        num_layers=transformer_layers_per_block,
2081
2082
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2083
                        use_linear_projection=use_linear_projection,
2084
                        only_cross_attention=only_cross_attention,
2085
                        upcast_attention=upcast_attention,
2086
2087
2088
2089
2090
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2091
2092
                        num_attention_heads,
                        out_channels // num_attention_heads,
2093
2094
2095
2096
2097
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2098
2099
2100
2101
2102
2103
2104
2105
2106
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2107
2108
2109
2110
        self.gradient_checkpointing = False

    def forward(
        self,
2111
2112
2113
2114
2115
2116
2117
2118
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2119
    ):
Patrick von Platen's avatar
Patrick von Platen committed
2120
2121
2122
2123
2124
2125
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2126
2127
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2128
                def create_custom_forward(module, return_dict=None):
2129
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2130
2131
2132
2133
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2134
2135
2136

                    return custom_forward

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
2155
2156
            else:
                hidden_states = resnet(hidden_states, temb)
2157
2158
2159
2160
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2161
2162
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2163
2164
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2165
2166
2167

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2168
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
2169
2170
2171
2172

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2173
class UpBlock2D(nn.Module):
2174
2175
2176
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2177
2178
        prev_output_channel: int,
        out_channels: int,
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2194
2195
2196
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2197
            resnets.append(
2198
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2199
2200
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2215
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2216
2217
2218
        else:
            self.upsamplers = None

2219
2220
        self.gradient_checkpointing = False

2221
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
2222
2223
2224
2225
2226
2227
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2228
2229
2230
2231
2232
2233
2234
2235
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2236
2237
2238
2239
2240
2241
2242
2243
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2244
2245
            else:
                hidden_states = resnet(hidden_states, temb)
2246
2247
2248

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2249
                hidden_states = upsampler(hidden_states, upsample_size)
2250
2251

        return hidden_states
2252
2253


2254
2255
2256
2257
2258
2259
2260
2261
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2262
        resnet_time_scale_shift: str = "default",  # default, spatial
2263
2264
2265
2266
2267
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2268
        temb_channels=None,
2269
2270
2271
2272
2273
2274
2275
2276
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2277
                ResnetBlock2D(
2278
2279
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2280
                    temb_channels=temb_channels,
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2298
    def forward(self, hidden_states, temb=None):
2299
        for resnet in self.resnets:
YiYi Xu's avatar
YiYi Xu committed
2300
            hidden_states = resnet(hidden_states, temb=temb)
2301
2302
2303
2304
2305
2306
2307
2308

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2321
        attention_head_dim=1,
2322
2323
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2324
        temb_channels=None,
2325
2326
2327
2328
2329
    ):
        super().__init__()
        resnets = []
        attentions = []

2330
2331
2332
2333
2334
2335
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2336
2337
2338
2339
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2340
                ResnetBlock2D(
2341
2342
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2343
                    temb_channels=temb_channels,
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2354
                Attention(
2355
                    out_channels,
2356
2357
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2358
2359
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2360
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2361
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2362
2363
2364
2365
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2377
    def forward(self, hidden_states, temb=None):
2378
        for resnet, attn in zip(self.resnets, self.attentions):
YiYi Xu's avatar
YiYi Xu committed
2379
2380
            hidden_states = resnet(hidden_states, temb=temb)
            hidden_states = attn(hidden_states, temb=temb)
2381
2382
2383
2384
2385
2386
2387
2388

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2389
class AttnSkipUpBlock2D(nn.Module):
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2402
        attention_head_dim=1,
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2415
                ResnetBlock2D(
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2430
2431
2432
2433
2434
2435
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2436
        self.attentions.append(
2437
            Attention(
2438
                out_channels,
2439
2440
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2441
2442
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2443
2444
2445
2446
2447
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2448
2449
2450
2451
2452
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2453
            self.resnet_up = ResnetBlock2D(
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2465
                use_in_shortcut=True,
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2508
class SkipUpBlock2D(nn.Module):
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2533
                ResnetBlock2D(
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2550
            self.resnet_up = ResnetBlock2D(
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2562
                use_in_shortcut=True,
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2619
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2640
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2660
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2685
2686
2687
2688
2689
2690
2691
2692
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2717
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2718
2719
2720
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2721
        skip_time_act=False,
2722
        only_cross_attention=False,
2723
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2724
2725
2726
2727
2728
2729
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2730
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2731

2732
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2750
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2751
2752
                )
            )
2753
2754
2755
2756
2757

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2758
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2759
                Attention(
Will Berman's avatar
Will Berman committed
2760
2761
2762
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2763
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2764
2765
2766
2767
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2768
                    only_cross_attention=only_cross_attention,
2769
                    cross_attention_norm=cross_attention_norm,
2770
                    processor=processor,
Will Berman's avatar
Will Berman committed
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2790
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2802
2803
2804
2805
2806
2807
2808
2809
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2810
    ):
2811
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2824
2825
2826
2827
2828
2829
2830
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2831
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2832

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
2847
                    mask,
2848
2849
2850
2851
2852
2853
2854
2855
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
2856
                    attention_mask=mask,
2857
2858
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
2859
2860
2861
2862
2863
2864

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2929
2930
2931
2932
2933
2934
2935
2936
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
2958
        attention_head_dim=1,  # attention dim_head
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
2972
        self.attention_head_dim = attention_head_dim
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3008
                    k_out_channels // attention_head_dim
3009
                    if (i == num_layers - 1)
3010
3011
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3012
3013
3014
3015
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3016
                    cross_attention_norm="layer_norm",
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
3033
3034
3035
3036
3037
3038
3039
3040
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
3075
3076
3077
3078
3079
3080
3081
3082
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3083
                    encoder_attention_mask=encoder_attention_mask,
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3122
        cross_attention_norm: Optional[str] = None,
3123
3124
3125
3126
3127
3128
3129
3130
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3131
            self.attn1 = Attention(
3132
3133
3134
3135
3136
3137
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3138
                cross_attention_norm=None,
3139
3140
3141
3142
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3143
        self.attn2 = Attention(
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3162
3163
3164
3165
3166
3167
3168
3169
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3183
                attention_mask=attention_mask,
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3198
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3199
3200
3201
3202
3203
3204
3205
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states