resnet.py 31.3 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
from functools import partial
Patrick von Platen's avatar
Patrick von Platen committed
2
3

import numpy as np
4
5
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F


9
class Upsample2D(nn.Module):
10
11
12
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
13
14
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
15
16
17
                 upsampling occurs in the inner-two dimensions.
    """

18
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
19
20
21
22
23
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
24
        self.name = name
25

patil-suraj's avatar
patil-suraj committed
26
        conv = None
27
        if use_conv_transpose:
28
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
29
        elif use_conv:
30
            conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
31

32
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
33
34
35
36
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
37
38
39
40
41

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
42

43
        x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
44

45
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
46
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
47
48
49
50
            if self.name == "conv":
                x = self.conv(x)
            else:
                x = self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
51

52
53
54
        return x


55
class Downsample2D(nn.Module):
56
57
58
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
59
60
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
61
62
63
                 downsampling occurs in the inner-two dimensions.
    """

64
    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
65
66
67
68
69
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
70
        stride = 2
patil-suraj's avatar
patil-suraj committed
71
72
        self.name = name

73
        if use_conv:
74
            conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
75
76
        else:
            assert self.channels == self.out_channels
77
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
patil-suraj's avatar
patil-suraj committed
78

79
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
80
81
        if name == "conv":
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
82
83
        elif name == "Conv2d_0":
            self.Conv2d_0 = conv
Patrick von Platen's avatar
Patrick von Platen committed
84
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
85
86
        else:
            self.op = conv
Patrick von Platen's avatar
Patrick von Platen committed
87
            self.conv = conv
88
89
90

    def forward(self, x):
        assert x.shape[1] == self.channels
91
        if self.use_conv and self.padding == 0:
92
93
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
94

95
96
97
98
        assert x.shape[1] == self.channels
        x = self.conv(x)

        return x
99
100
101
102
103
104
105
106
107
108
109
110


class FirUpsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.use_conv = use_conv
        self.fir_kernel = fir_kernel
        self.out_channels = out_channels

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    def _upsample_2d(self, x, w=None, k=None, factor=2, gain=1):
        """Fused `upsample_2d()` followed by `Conv2d()`.

        Args:
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
        order.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
            C]`.
        w: Weight tensor of the shape `[filterH, filterW, inChannels,
            outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
            (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

        Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as
        `x`.
        """

        assert isinstance(factor, int) and factor >= 1

        # Setup filter kernel.
        if k is None:
            k = [1] * factor

        # setup kernel
        k = np.asarray(k, dtype=np.float32)
        if k.ndim == 1:
            k = np.outer(k, k)
        k /= np.sum(k)

        k = k * (gain * (factor**2))

        if self.use_conv:
            convH = w.shape[2]
            convW = w.shape[3]
            inC = w.shape[1]

            p = (k.shape[0] - factor) - (convW - 1)

            stride = (factor, factor)
            # Determine data dimensions.
            stride = [1, 1, factor, factor]
            output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW)
            output_padding = (
                output_shape[0] - (x.shape[2] - 1) * stride[0] - convH,
                output_shape[1] - (x.shape[3] - 1) * stride[1] - convW,
            )
            assert output_padding[0] >= 0 and output_padding[1] >= 0
            inC = w.shape[1]
            num_groups = x.shape[1] // inC

            # Transpose weights.
            w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
            w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
            w = torch.reshape(w, (num_groups * inC, -1, convH, convW))

            x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0)

            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
        else:
            p = k.shape[0] - factor
            x = upfirdn2d_native(
                x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
            )

        return x

180
181
    def forward(self, x):
        if self.use_conv:
182
            h = self._upsample_2d(x, self.Conv2d_0.weight, k=self.fir_kernel)
183
184
            h = h + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
        else:
185
            h = self._upsample_2d(x, k=self.fir_kernel, factor=2)
186
187
188
189
190
191
192
193
194

        return h


class FirDownsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
195
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
196
197
198
199
        self.fir_kernel = fir_kernel
        self.use_conv = use_conv
        self.out_channels = out_channels

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def _downsample_2d(self, x, w=None, k=None, factor=2, gain=1):
        """Fused `Conv2d()` followed by `downsample_2d()`.

        Args:
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
        order.
            x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH,
            filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] //
            numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
            factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain:
            Scaling factor for signal magnitude (default: 1.0).

        Returns:
            Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
            datatype as `x`.
        """
217

218
219
220
        assert isinstance(factor, int) and factor >= 1
        if k is None:
            k = [1] * factor
221

222
223
224
225
226
        # setup kernel
        k = np.asarray(k, dtype=np.float32)
        if k.ndim == 1:
            k = np.outer(k, k)
        k /= np.sum(k)
227

228
        k = k * gain
229

230
231
232
233
234
235
236
237
238
        if self.use_conv:
            _, _, convH, convW = w.shape
            p = (k.shape[0] - factor) + (convW - 1)
            s = [factor, factor]
            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p // 2))
            x = F.conv2d(x, w, stride=s, padding=0)
        else:
            p = k.shape[0] - factor
            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
239

240
        return x
241

242
243
244
245
246
247
    def forward(self, x):
        if self.use_conv:
            x = self._downsample_2d(x, w=self.Conv2d_0.weight, k=self.fir_kernel)
            x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
        else:
            x = self._downsample_2d(x, k=self.fir_kernel, factor=2)
248

249
        return x
250
251


252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class ResnetBlock(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
        time_embedding_norm="default",
        kernel=None,
        output_scale_factor=1.0,
        use_nin_shortcut=None,
        up=False,
        down=False,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut

        self.conv_shortcut = None
        if self.use_nin_shortcut:
            self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb, hey=False):
        h = x

        h = self.norm1(h)
        h = self.nonlinearity(h)

        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)

        h = self.conv1(h)

        if temb is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
            h = h + temb

        h = self.norm2(h)
        h = self.nonlinearity(h)

        h = self.dropout(h)
        h = self.conv2(h)

        if self.conv_shortcut is not None:
            x = self.conv_shortcut(x)

        out = (x + h) / self.output_scale_factor

        return out

    def set_weight(self, resnet):
        self.norm1.weight.data = resnet.norm1.weight.data
        self.norm1.bias.data = resnet.norm1.bias.data

        self.conv1.weight.data = resnet.conv1.weight.data
        self.conv1.bias.data = resnet.conv1.bias.data

        self.time_emb_proj.weight.data = resnet.temb_proj.weight.data
        self.time_emb_proj.bias.data = resnet.temb_proj.bias.data

        self.norm2.weight.data = resnet.norm2.weight.data
        self.norm2.bias.data = resnet.norm2.bias.data

        self.conv2.weight.data = resnet.conv2.weight.data
        self.conv2.bias.data = resnet.conv2.bias.data

        if self.use_nin_shortcut:
            self.conv_shortcut.weight.data = resnet.nin_shortcut.weight.data
            self.conv_shortcut.bias.data = resnet.nin_shortcut.bias.data

381

382
# THE FOLLOWING SHOULD BE DELETED ONCE ALL CHECKPOITNS ARE CONVERTED
383

Patrick von Platen's avatar
update  
Patrick von Platen committed
384
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
Patrick von Platen's avatar
Patrick von Platen committed
385
# => All 2D-Resnets are included here now!
Patrick von Platen's avatar
Patrick von Platen committed
386
class ResnetBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
387
388
389
390
391
392
393
394
395
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
396
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
400
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
401
        kernel=None,
Patrick von Platen's avatar
Patrick von Platen committed
402
403
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
404
405
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
406
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
407
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
408
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
409
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
410
    ):
411
412
413
414
415
416
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
417
418
419
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
423
424
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

425
        if self.pre_norm:
426
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
427
        else:
428
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
429
430

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
431

432
        if time_embedding_norm == "default" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
433
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
434
        elif time_embedding_norm == "scale_shift" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
435
436
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

437
        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
438
439
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
440

441
        if non_linearity == "swish":
442
            self.nonlinearity = lambda x: F.silu(x)
443
444
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
445
446
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
447

Patrick von Platen's avatar
Patrick von Platen committed
448
        self.upsample = self.downsample = None
449
450
451
452
453
454
455
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
456
                self.upsample = Upsample2D(in_channels, use_conv=False)
457
458
459
460
461
462
463
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
464
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
465

466
        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
467

468
        self.nin_shortcut = None
Patrick von Platen's avatar
Patrick von Platen committed
469
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
470
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
471

Patrick von Platen's avatar
Patrick von Platen committed
472
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
473
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
474
        self.overwrite_for_glide = overwrite_for_glide
475
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
476
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
477
        self.overwrite_for_score_vde = overwrite_for_score_vde
478
479
480
481
482
483
484
485
486
487
488
489
490
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
491
492
493
494
        elif self.overwrite_for_ldm:
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
495
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
496
497
498
499

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
500
                nn.Conv2d(channels, self.out_channels, 3, padding=1),
Patrick von Platen's avatar
up  
Patrick von Platen committed
501
502
503
504
505
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
506
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
507
508
509
510
511
512
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
513
                zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
Patrick von Platen's avatar
up  
Patrick von Platen committed
514
515
516
517
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
518
                self.skip_connection = nn.Conv2d(channels, self.out_channels, 1)
519
            self.set_weights_ldm()
Patrick von Platen's avatar
Patrick von Platen committed
520
521
522
523
524
525
526
527
528
529
530
531
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
532
            self.Conv_0 = nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536
537
538
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
539
            self.Conv_1 = nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
540
541
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
542
                self.Conv_2 = nn.Conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
543
544
545

            self.in_ch = in_ch
            self.out_ch = out_ch
546
            self.set_weights_score_vde()
Patrick von Platen's avatar
Patrick von Platen committed
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

604
    def forward(self, x, temb, hey=False, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
605
606
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
607
608
609
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
610
611
612
613
614
615
        #        elif self.overwrite_for_score_vde and not self.is_overwritten:
        #            self.set_weights_score_vde()
        #            self.is_overwritten = True

        # h2 tensor(110029.2109)
        # h3 tensor(49596.9492)
616
617

        h = x
618

Patrick von Platen's avatar
up  
Patrick von Platen committed
619
        h = h * mask
620
621
622
623
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
624
625
626
627
628
629
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
630

631
632
633
634
635
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
636
        h = h * mask
637

638
639
640
641
        if temb is not None:
            temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
        else:
            temb = 0
Patrick von Platen's avatar
Patrick von Platen committed
642

Patrick von Platen's avatar
Patrick von Platen committed
643
644
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
645
646

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
647
            h = h + h * scale + shift
648
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653
654
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
655
656
657
658
659
660
661

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
662
        h = h * mask
663

Patrick von Platen's avatar
up  
Patrick von Platen committed
664
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
665
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
666
            x = self.nin_shortcut(x)
667

668
        out = (x + h) / self.output_scale_factor
669

670
        return out
671
672


Patrick von Platen's avatar
finish  
Patrick von Platen committed
673
# TODO(Patrick) - just there to convert the weights; can delete afterward
674
675
676
677
678
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
679
680
681
682
683
684
685
        )


# HELPER Modules


def normalization(channels, swish=0.0):
686
    """
Patrick von Platen's avatar
Patrick von Platen committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
718
    """
Patrick von Platen's avatar
Patrick von Platen committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
735
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
736
737
738
739
740
741
742
743
744
745

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
746
747

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
762
        else:
Patrick von Platen's avatar
Patrick von Platen committed
763
764
765
766
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


def upsample_2d(x, k=None, factor=2, gain=1):
767
    r"""Upsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
786
787
788
789
790
791
792

    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)

    k = k * (gain * (factor**2))
Patrick von Platen's avatar
Patrick von Platen committed
793
    p = k.shape[0] - factor
794
    return upfirdn2d_native(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))
Patrick von Platen's avatar
Patrick von Platen committed
795
796
797


def downsample_2d(x, k=None, factor=2, gain=1):
798
    r"""Downsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor

    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

    k = k * gain
    p = k.shape[0] - factor
    return upfirdn2d_native(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)):
    up_x = up_y = up
    down_x = down_y = down
    pad_x0 = pad_y0 = pad[0]
    pad_x1 = pad_y1 = pad[1]

    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)