loaders.py 144 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import importlib
15
import os
16
import re
17
from collections import defaultdict
18
19
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
20
from pathlib import Path
21
from typing import Callable, Dict, List, Optional, Union
22

23
import requests
24
import safetensors
25
import torch
26
from huggingface_hub import hf_hub_download, model_info
27
from packaging import version
Will Berman's avatar
Will Berman committed
28
from torch import nn
29

30
from .models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
31
32
33
34
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
35
36
    convert_state_dict_to_diffusers,
    convert_state_dict_to_peft,
37
    deprecate,
38
39
    get_adapter_name,
    get_peft_kwargs,
40
41
    is_accelerate_available,
    is_omegaconf_available,
42
    is_peft_available,
43
44
    is_transformers_available,
    logging,
45
    recurse_remove_peft_layers,
46
47
48
    scale_lora_layers,
    set_adapter_layers,
    set_weights_and_activate_adapters,
49
)
50
from .utils.import_utils import BACKENDS_MAPPING
51
52


53
if is_transformers_available():
54
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel
55

56
57
if is_accelerate_available():
    from accelerate import init_empty_weights
58
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
59
60
61

logger = logging.get_logger(__name__)

62
63
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
64
65

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
66
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
67

68
69
70
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

71
72
73
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Below should be `True` if the current version of `peft` and `transformers` are compatible with
# PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are
# available.
# For PEFT it is has to be greater than 0.6.0 and for transformers it has to be greater than 4.33.1.
_required_peft_version = is_peft_available() and version.parse(
    version.parse(importlib.metadata.version("peft")).base_version
) > version.parse("0.5")
_required_transformers_version = version.parse(
    version.parse(importlib.metadata.version("transformers")).base_version
) > version.parse("4.33")

USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version
LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future."


Will Berman's avatar
Will Berman committed
90
91
92
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
93
        from .models.lora import LoRALinearLayer
94

Will Berman's avatar
Will Berman committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
119
120
121
122
    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

123
    def _fuse_lora(self, lora_scale=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
132
133
134
135
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

136
        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
143
144
        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
145
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
146
147

    def _unfuse_lora(self):
148
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
152
153
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

157
        unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
162
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

Will Berman's avatar
Will Berman committed
163
    def forward(self, input):
164
165
        if self.lora_scale is None:
            self.lora_scale = 1.0
Patrick von Platen's avatar
Patrick von Platen committed
166
167
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
168
        return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
Will Berman's avatar
Will Berman committed
169
170
171
172
173


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

174
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
175
176
177
178
179
180
181
182
183
184
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


185
186
187
188
189
190
191
192
193
194
195
196
197
198
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


218
219
220
221
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
222
        self.mapping = dict(enumerate(state_dict.keys()))
223
224
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

225
226
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
227

228
229
230
231
232
233
234
235
236
237
238
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

239
240
241
242
243
244
245
246
247
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

248
249
250
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
251
                replace_key = remap_key(key, state_dict)
252
253
254
255
256
257
258
259
260
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
261
262
263
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

264
265
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
266
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
267
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
268
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
269
270
271
272
273
274
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
275
276
277
278
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
279
280
281
282
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
283
284
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
285
286
287
288
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
289
290
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
291
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
292
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
293
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
294
295
296
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
297
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
298
299
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
300
301
302
303
304
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
305
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
306
307
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
308
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
309
                The subfolder location of a model file within a larger model repository on the Hub or locally.
310
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
311
312
313
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
314
315

        """
316
317
318
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
        )
319
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
320
321
322
323
324
325
326
327
328

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
329
        weight_name = kwargs.pop("weight_name", None)
330
        use_safetensors = kwargs.pop("use_safetensors", None)
331
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
332
333
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
334
        network_alphas = kwargs.pop("network_alphas", None)
335
336
337

        _pipeline = kwargs.pop("_pipeline", None)

338
        is_network_alphas_none = network_alphas is None
339
340

        allow_pickle = False
341

342
        if use_safetensors is None:
343
            use_safetensors = True
344
            allow_pickle = True
345
346
347
348
349
350

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

351
352
353
354
355
356
357
358
359
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

360
        model_file = None
361
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
362
            # Let's first try to load .safetensors weights
363
            if (use_safetensors and weight_name is None) or (
364
365
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
366
367
368
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
369
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
370
371
372
373
374
375
376
377
378
379
380
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
381
382
383
                except IOError as e:
                    if not allow_pickle:
                        raise e
384
385
                    # try loading non-safetensors weights
                    pass
386
387
388
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
389
                    weights_name=weight_name or LORA_WEIGHT_NAME,
390
391
392
393
394
395
396
397
398
399
400
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
401
402
403
404
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
405
        lora_layers_list = []
406

407
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
408
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
409
410

        if is_lora:
411
412
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
413

414
415
416
417
            if network_alphas is not None:
                network_alphas_keys = list(network_alphas.keys())
                used_network_alphas_keys = set()

418
            lora_grouped_dict = defaultdict(dict)
419
420
421
422
423
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
424
425
426
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

427
428
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
429
                    for k in network_alphas_keys:
430
                        if k.replace(".alpha", "") in key:
431
432
                            mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
                            used_network_alphas_keys.add(k)
433
434

            if not is_network_alphas_none:
435
                if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
436
437
438
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
439
440
441

            if len(state_dict) > 0:
                raise ValueError(
442
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
443
444
                )

445
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
446
447
448
449
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

450
451
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
452
453
454
455
456
457
458
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

459
460
461
462
463
464
465
466
467
468
469
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
470
                elif isinstance(attn_processor, LoRACompatibleLinear):
471
472
473
474
475
476
477
478
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRALinearLayer(
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
                        )
Will Berman's avatar
Will Berman committed
479
                else:
480
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
Will Berman's avatar
Will Berman committed
481

482
483
                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora_layers_list.append((attn_processor, lora))
484

485
486
487
488
489
490
                if low_cpu_mem_usage:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
                else:
                    lora.load_state_dict(value_dict)
491

492
        elif is_custom_diffusion:
493
            attn_processors = {}
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
521
        else:
522
523
524
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # <Unsafe code
        # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
        # Now we remove any existing hooks to
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        if _pipeline is not None:
            for _, component in _pipeline.components.items():
                if isinstance(component, nn.Module):
                    if hasattr(component, "_hf_hook"):
                        is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                        is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                        logger.info(
                            "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                        )
                        remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

        # only custom diffusion needs to set attn processors
        if is_custom_diffusion:
            self.set_attn_processor(attn_processors)

546
547
        # set lora layers
        for target_module, lora_layer in lora_layers_list:
548
            target_module.set_lora_layer(lora_layer)
549

550
551
        self.to(dtype=self.dtype, device=self.device)

552
553
554
555
556
557
558
        # Offload back.
        if is_model_cpu_offload:
            _pipeline.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            _pipeline.enable_sequential_cpu_offload()
        # Unsafe code />

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

586
587
588
589
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
590
        weight_name: str = None,
591
        save_function: Callable = None,
592
593
        safe_serialization: bool = True,
        **kwargs,
594
595
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
596
        Save an attention processor to a directory so that it can be reloaded using the
597
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
598
599
600

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
601
                Directory to save an attention processor to. Will be created if it doesn't exist.
602
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
603
604
605
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
606
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
607
608
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
609
                `DIFFUSERS_SAVE_MODE`.
610
611
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
612
        """
613
614
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
615
            CustomDiffusionAttnProcessor2_0,
616
617
618
            CustomDiffusionXFormersAttnProcessor,
        )

619
620
621
622
623
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
624
625
626
627
628
629
630
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
631
632
633

        os.makedirs(save_directory, exist_ok=True)

634
        is_custom_diffusion = any(
635
636
637
638
            isinstance(
                x,
                (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
            )
639
640
641
642
643
644
645
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
646
647
648
649
650
651
652
653
                    if isinstance(
                        x,
                        (
                            CustomDiffusionAttnProcessor,
                            CustomDiffusionAttnProcessor2_0,
                            CustomDiffusionXFormersAttnProcessor,
                        ),
                    )
654
655
656
657
658
659
660
661
662
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
663

664
        if weight_name is None:
665
            if safe_serialization:
666
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
667
            else:
668
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
669

670
        # Save the model
671
672
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
673

674
675
    def fuse_lora(self, lora_scale=1.0):
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
676
677
678
679
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if hasattr(module, "_fuse_lora"):
680
            module._fuse_lora(self.lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
681
682
683
684
685
686
687
688

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if hasattr(module, "_unfuse_lora"):
            module._unfuse_lora()

689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
    cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
    force_download = kwargs.pop("force_download", False)
    resume_download = kwargs.pop("resume_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
    use_auth_token = kwargs.pop("use_auth_token", None)
    revision = kwargs.pop("revision", None)
    subfolder = kwargs.pop("subfolder", None)
    weight_name = kwargs.pop("weight_name", None)
    use_safetensors = kwargs.pop("use_safetensors", None)

    allow_pickle = False
    if use_safetensors is None:
        use_safetensors = True
        allow_pickle = True

    user_agent = {
        "file_type": "text_inversion",
        "framework": "pytorch",
    }
    state_dicts = []
    for pretrained_model_name_or_path in pretrained_model_name_or_paths:
        if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
            # 3.1. Load textual inversion file
            model_file = None

            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
                        weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except Exception as e:
                    if not allow_pickle:
                        raise e

                    model_file = None

            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=weight_name or TEXT_INVERSION_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path

        state_dicts.append(state_dict)

    return state_dicts


765
766
class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
767
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
768
769
    """

770
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):  # noqa: F821
771
        r"""
Steven Liu's avatar
Steven Liu committed
772
773
774
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

797
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):  # noqa: F821
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
814
815
        unique_tokens = set(tokens)
        for token in unique_tokens:
816
817
818
819
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
820
                    replacement += f" {token}_{i}"
821
822
823
824
825
826
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
        if tokenizer is None:
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if text_encoder is None:
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

    @staticmethod
    def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
        all_tokens = []
        all_embeddings = []
        for state_dict, token in zip(state_dicts, tokens):
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                loaded_token = token
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]
            else:
                raise ValueError(
                    f"Loaded state dictonary is incorrect: {state_dict}. \n\n"
                    "Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
                    " input key."
                )

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            if token in tokenizer.get_vocab():
                raise ValueError(
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
                )

            all_tokens.append(token)
            all_embeddings.append(embedding)

        return all_tokens, all_embeddings

    @staticmethod
    def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
        all_tokens = []
        all_embeddings = []

        for embedding, token in zip(embeddings, tokens):
            if f"{token}_1" in tokenizer.get_vocab():
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1

                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )

            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
            if is_multi_vector:
                all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                all_embeddings += [e for e in embedding]  # noqa: C416
            else:
                all_tokens += [token]
                all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]

        return all_tokens, all_embeddings

918
    def load_textual_inversion(
919
        self,
920
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
921
        token: Optional[Union[str, List[str]]] = None,
922
923
        tokenizer: Optional["PreTrainedTokenizer"] = None,  # noqa: F821
        text_encoder: Optional["PreTrainedModel"] = None,  # noqa: F821
924
        **kwargs,
925
926
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
927
928
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
929
930

        Parameters:
931
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
932
                Can be either one of the following or a list of them:
933

Steven Liu's avatar
Steven Liu committed
934
935
936
937
938
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
939
940
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
941
942
943
944

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
945
946
947
948
949
            text_encoder ([`~transformers.CLIPTextModel`], *optional*):
                Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
                If not specified, function will take self.tokenizer.
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
                A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
950
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
951
                Name of a custom weight file. This should be used when:
952

Steven Liu's avatar
Steven Liu committed
953
954
955
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
956
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
957
958
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
959
960
961
962
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
963
964
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
965
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
966
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
967
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
968
969
970
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
971
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
972
973
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
974
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
975
976
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
977
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
978
                The subfolder location of a model file within a larger model repository on the Hub or locally.
979
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
980
981
982
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
983
984
985

        Example:

Steven Liu's avatar
Steven Liu committed
986
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
1003
1004
1005
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
1006
1007
1008
1009
1010
1011
1012
1013

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

1014
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
1015
1016
1017
1018
1019
1020

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
1021

1022
        """
1023
        # 1. Set correct tokenizer and text encoder
1024
1025
1026
        tokenizer = tokenizer or getattr(self, "tokenizer", None)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)

1027
1028
1029
1030
1031
1032
1033
        # 2. Normalize inputs
        pretrained_model_name_or_paths = (
            [pretrained_model_name_or_path]
            if not isinstance(pretrained_model_name_or_path, list)
            else pretrained_model_name_or_path
        )
        tokens = len(pretrained_model_name_or_paths) * [token] if (isinstance(token, str) or token is None) else token
1034

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        # 3. Check inputs
        self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)

        # 4. Load state dicts of textual embeddings
        state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)

        # 4. Retrieve tokens and embeddings
        tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)

        # 5. Extend tokens and embeddings for multi vector
        tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)

        # 6. Make sure all embeddings have the correct size
        expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
        if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
1050
            raise ValueError(
1051
1052
                "Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
                "to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
1053
1054
            )

1055
1056
1057
1058
        # 7. Now we can be sure that loading the embedding matrix works
        # < Unsafe code:

        # 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        for _, component in self.components.items():
            if isinstance(component, nn.Module):
                if hasattr(component, "_hf_hook"):
                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                    is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
                    )
1069
                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1070

1071
1072
1073
        # 7.2 save expected device and dtype
        device = text_encoder.device
        dtype = text_encoder.dtype
1074

1075
1076
1077
        # 7.3 Increase token embedding matrix
        text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
        input_embeddings = text_encoder.get_input_embeddings().weight
1078

1079
1080
        # 7.4 Load token and embedding
        for token, embedding in zip(tokens, embeddings):
1081
            # add tokens and get ids
1082
1083
1084
            tokenizer.add_tokens(token)
            token_id = tokenizer.convert_tokens_to_ids(token)
            input_embeddings.data[token_id] = embedding
1085
            logger.info(f"Loaded textual inversion embedding for {token}.")
1086

1087
        input_embeddings.to(dtype=dtype, device=device)
1088

1089
        # 7.5 Offload the model again
1090
1091
1092
1093
1094
        if is_model_cpu_offload:
            self.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            self.enable_sequential_cpu_offload()

1095
1096
        # / Unsafe Code >

1097
1098
1099

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
1100
1101
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
1102
    """
1103
1104
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
1105
    num_fused_loras = 0
1106
    use_peft_backend = USE_PEFT_BACKEND
1107

1108
1109
1110
    def load_lora_weights(
        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
    ):
Will Berman's avatar
Will Berman committed
1111
        """
1112
1113
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1128
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
1129
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1130
1131
1132
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
Will Berman's avatar
Will Berman committed
1133
        """
1134
1135
1136
1137
1138
1139
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
1140

1141
1142
1143
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        self.load_lora_into_unet(
1144
1145
1146
1147
1148
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            low_cpu_mem_usage=low_cpu_mem_usage,
            _pipeline=self,
1149
        )
Will Berman's avatar
Will Berman committed
1150
        self.load_lora_into_text_encoder(
1151
            state_dict,
1152
            network_alphas=network_alphas,
1153
1154
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
1155
            low_cpu_mem_usage=low_cpu_mem_usage,
1156
            adapter_name=adapter_name,
1157
            _pipeline=self,
Will Berman's avatar
Will Berman committed
1158
1159
1160
1161
1162
1163
1164
1165
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
1166
        r"""
1167
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
1168
1169
1170
1171
1172
1173
1174
1175

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
1176
1177
1178
1179
1180

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1181
1182
1183
1184
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
1185
1186
1187
1188
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1189
1190
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1191
1192
1193
1194
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1195
1196
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1197
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1198
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1199
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
1200
1201
1202
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1203
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1204
1205
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1206
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1207
1208
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1209
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
1210
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1211
1212
1213
1214
1215
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
1216
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1217
1218
1219
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1233
        unet_config = kwargs.pop("unet_config", None)
1234
1235
1236
1237
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1238
            use_safetensors = True
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1253
1254
1255
1256
1257
1258
1259
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1274
                except (IOError, safetensors.SafetensorError) as e:
1275
1276
1277
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1278
                    model_file = None
1279
                    pass
1280

1281
            if model_file is None:
1282
1283
1284
1285
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1303
        network_alphas = None
1304
        # TODO: replace it with a method from `state_dict_utils`
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
1317
                state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1318
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1319

1320
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1321

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

1338
1339
1340
1341
1342
1343
1344
1345
        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

1346
1347
1348
1349
1350
1351
1352
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1353
    @classmethod
1354
1355
    def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        # 1. get all state_dict_keys
chillpixel's avatar
chillpixel committed
1356
        all_keys = list(state_dict.keys())
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

        # 2. check if needs remapping, if not return original dict
        is_in_sgm_format = False
        for key in all_keys:
            if any(p in key for p in sgm_patterns):
                is_in_sgm_format = True
                break

        if not is_in_sgm_format:
            return state_dict

        # 3. Else remap from SGM patterns
1370
1371
1372
1373
1374
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1375
1376
1377
1378
1379

        for layer in all_keys:
            if "text" in layer:
                new_state_dict[layer] = state_dict.pop(layer)
            else:
1380
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1381
                if sgm_patterns[0] in layer:
1382
                    input_block_ids.add(layer_id)
1383
                elif sgm_patterns[1] in layer:
1384
                    middle_block_ids.add(layer_id)
1385
                elif sgm_patterns[2] in layer:
1386
1387
                    output_block_ids.add(layer_id)
                else:
1388
                    raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

1451
        if len(state_dict) > 0:
1452
1453
1454
1455
1456
            raise ValueError("At this point all state dict entries have to be converted.")

        return new_state_dict

    @classmethod
1457
    def load_lora_into_unet(cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, _pipeline=None):
Will Berman's avatar
Will Berman committed
1458
        """
1459
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1460
1461
1462
1463
1464
1465

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1466
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1467
1468
1469
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
1470
1471
1472
1473
1474
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
Will Berman's avatar
Will Berman committed
1475
        """
1476
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
1477
1478
1479
1480
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1481

Will Berman's avatar
Will Berman committed
1482
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1483
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1484
            logger.info(f"Loading {cls.unet_name}.")
1485

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
zideliu's avatar
zideliu committed
1498
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1499
            logger.warn(warn_message)
1500

1501
1502
1503
        unet.load_attn_procs(
            state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
        )
1504

Will Berman's avatar
Will Berman committed
1505
    @classmethod
1506
    def load_lora_into_text_encoder(
1507
1508
1509
1510
1511
1512
1513
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        low_cpu_mem_usage=None,
1514
        adapter_name=None,
1515
        _pipeline=None,
1516
    ):
Will Berman's avatar
Will Berman committed
1517
1518
1519
1520
1521
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1522
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1523
                additional `text_encoder` to distinguish between unet lora layers.
1524
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1525
1526
1527
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1528
1529
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1530
1531
1532
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
1533
1534
1535
1536
1537
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
1538
1539
1540
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
Will Berman's avatar
Will Berman committed
1541
        """
1542
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
Will Berman's avatar
Will Berman committed
1543
1544
1545
1546
1547

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1548
1549
        prefix = cls.text_encoder_name if prefix is None else prefix

1550
        # Safe prefix to check with.
1551
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1552
            # Load the layers corresponding to text encoder and make necessary adjustments.
1553
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1554
            text_encoder_lora_state_dict = {
1555
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1556
            }
1557

Will Berman's avatar
Will Berman committed
1558
            if len(text_encoder_lora_state_dict) > 0:
1559
                logger.info(f"Loading {prefix}.")
1560
                rank = {}
1561
                text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
Will Berman's avatar
Will Berman committed
1562

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
                if cls.use_peft_backend:
                    # convert state dict
                    text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)

                    for name, _ in text_encoder_attn_modules(text_encoder):
                        rank_key = f"{name}.out_proj.lora_B.weight"
                        rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]

                    patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
                    if patch_mlp:
                        for name, _ in text_encoder_mlp_modules(text_encoder):
                            rank_key_fc1 = f"{name}.fc1.lora_B.weight"
                            rank_key_fc2 = f"{name}.fc2.lora_B.weight"
                            rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
                            rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
                else:
Will Berman's avatar
Will Berman committed
1579
                    for name, _ in text_encoder_attn_modules(text_encoder):
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
                        rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                        rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

                    patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
                    if patch_mlp:
                        for name, _ in text_encoder_mlp_modules(text_encoder):
                            rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                            rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                            rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
                            rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
Will Berman's avatar
Will Berman committed
1590

1591
1592
1593
1594
1595
1596
1597
1598
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1599
1600
                if cls.use_peft_backend:
                    from peft import LoraConfig
Will Berman's avatar
Will Berman committed
1601

1602
                    lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict)
1603

1604
                    lora_config = LoraConfig(**lora_config_kwargs)
1605

1606
1607
1608
                    # adapter_name
                    if adapter_name is None:
                        adapter_name = get_adapter_name(text_encoder)
1609

1610
1611
1612
1613
1614
1615
1616
1617
                    # inject LoRA layers and load the state dict
                    text_encoder.load_adapter(
                        adapter_name=adapter_name,
                        adapter_state_dict=text_encoder_lora_state_dict,
                        peft_config=lora_config,
                    )
                    # scale LoRA layers with `lora_scale`
                    scale_lora_layers(text_encoder, weight=lora_scale)
1618
1619
1620

                    is_model_cpu_offload = False
                    is_sequential_cpu_offload = False
1621
                else:
1622
1623
1624
1625
1626
1627
1628
1629
                    cls._modify_text_encoder(
                        text_encoder,
                        lora_scale,
                        network_alphas,
                        rank=rank,
                        patch_mlp=patch_mlp,
                        low_cpu_mem_usage=low_cpu_mem_usage,
                    )
1630

1631
1632
1633
                    is_pipeline_offloaded = _pipeline is not None and any(
                        isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook")
                        for c in _pipeline.components.values()
Will Berman's avatar
Will Berman committed
1634
                    )
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
                    if is_pipeline_offloaded and low_cpu_mem_usage:
                        low_cpu_mem_usage = True
                        logger.info(
                            f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced."
                        )

                    if low_cpu_mem_usage:
                        device = next(iter(text_encoder_lora_state_dict.values())).device
                        dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
                        unexpected_keys = load_model_dict_into_meta(
                            text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
                        )
                    else:
                        load_state_dict_results = text_encoder.load_state_dict(
                            text_encoder_lora_state_dict, strict=False
                        )
                        unexpected_keys = load_state_dict_results.unexpected_keys
Will Berman's avatar
Will Berman committed
1652

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
                    if len(unexpected_keys) != 0:
                        raise ValueError(
                            f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                        )

                    # <Unsafe code
                    # We can be sure that the following works as all we do is change the dtype and device of the text encoder
                    # Now we remove any existing hooks to
                    is_model_cpu_offload = False
                    is_sequential_cpu_offload = False
                    if _pipeline is not None:
                        for _, component in _pipeline.components.items():
                            if isinstance(component, torch.nn.Module):
                                if hasattr(component, "_hf_hook"):
                                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                                    is_sequential_cpu_offload = isinstance(
                                        getattr(component, "_hf_hook"), AlignDevicesHook
                                    )
                                    logger.info(
                                        "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                                    )
                                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1675

1676
1677
                text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)

1678
1679
1680
1681
1682
1683
1684
                # Offload back.
                if is_model_cpu_offload:
                    _pipeline.enable_model_cpu_offload()
                elif is_sequential_cpu_offload:
                    _pipeline.enable_sequential_cpu_offload()
                # Unsafe code />

1685
1686
1687
1688
1689
1690
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1691
    def _remove_text_encoder_monkey_patch(self):
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
        if self.use_peft_backend:
            remove_method = recurse_remove_peft_layers
        else:
            remove_method = self._remove_text_encoder_monkey_patch_classmethod

        if hasattr(self, "text_encoder"):
            remove_method(self.text_encoder)

            if self.use_peft_backend:
                del self.text_encoder.peft_config
                self.text_encoder._hf_peft_config_loaded = None
        if hasattr(self, "text_encoder_2"):
            remove_method(self.text_encoder_2)
            if self.use_peft_backend:
                del self.text_encoder_2.peft_config
                self.text_encoder_2._hf_peft_config_loaded = None
Will Berman's avatar
Will Berman committed
1708
1709
1710

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
1711
1712
        deprecate("_remove_text_encoder_monkey_patch_classmethod", "0.23", LORA_DEPRECATION_MESSAGE)

Will Berman's avatar
Will Berman committed
1713
1714
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1715
1716
1717
1718
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None
Will Berman's avatar
Will Berman committed
1719

1720
1721
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1722
1723
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None
1724

Will Berman's avatar
Will Berman committed
1725
    @classmethod
1726
1727
1728
1729
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1730
        network_alphas=None,
1731
        rank: Union[Dict[str, int], int] = 4,
1732
1733
        dtype=None,
        patch_mlp=False,
1734
        low_cpu_mem_usage=False,
1735
    ):
1736
1737
1738
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1739
        deprecate("_modify_text_encoder", "0.23", LORA_DEPRECATION_MESSAGE)
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
        def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
            linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
            ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
            with ctx():
                model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)

            lora_parameters.extend(model.lora_linear_layer.parameters())
            return model

1750
        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1751
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1752

Will Berman's avatar
Will Berman committed
1753
        lora_parameters = []
1754
        network_alphas = {} if network_alphas is None else network_alphas
1755
        is_network_alphas_populated = len(network_alphas) > 0
1756
1757

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1758
1759
1760
1761
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1762

1763
1764
1765
1766
1767
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

1768
1769
            attn_module.q_proj = create_patched_linear_lora(
                attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1770
            )
1771
1772
            attn_module.k_proj = create_patched_linear_lora(
                attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
1773
            )
1774
1775
            attn_module.v_proj = create_patched_linear_lora(
                attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1776
            )
1777
1778
            attn_module.out_proj = create_patched_linear_lora(
                attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
Will Berman's avatar
Will Berman committed
1779
            )
1780

1781
        if patch_mlp:
1782
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1783
1784
1785
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1786
1787
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1788

1789
1790
                mlp_module.fc1 = create_patched_linear_lora(
                    mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1791
                )
1792
1793
                mlp_module.fc2 = create_patched_linear_lora(
                    mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
1794
1795
                )

1796
1797
1798
1799
1800
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1801
        return lora_parameters
1802
1803
1804
1805
1806

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1807
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1808
1809
1810
1811
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1812
        safe_serialization: bool = True,
1813
1814
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1815
        Save the LoRA parameters corresponding to the UNet and text encoder.
1816
1817
1818

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1819
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1820
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1821
1822
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1823
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1824
                encoder LoRA state dict because it comes from 🤗 Transformers.
1825
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1826
1827
1828
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1829
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1830
1831
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1832
                `DIFFUSERS_SAVE_MODE`.
1833
1834
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1835
1836
1837
        """
        # Create a flat dictionary.
        state_dict = {}
1838
1839

        # Populate the dictionary.
1840
        if unet_lora_layers is not None:
1841
1842
1843
1844
1845
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1846
            state_dict.update(unet_lora_state_dict)
1847

1848
        if text_encoder_lora_layers is not None:
1849
1850
1851
1852
1853
1854
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1855
            text_encoder_lora_state_dict = {
1856
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1857
1858
1859
1860
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1893
1894
1895
1896
1897
1898
1899
1900
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1901

Will Berman's avatar
Will Berman committed
1902
1903
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1904
1905
        unet_state_dict = {}
        te_state_dict = {}
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1922
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1923
1924
1925
1926

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1927
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1928
1929
1930
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1931
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1932

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
Sayak Paul's avatar
Sayak Paul committed
1943
                if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

Sayak Paul's avatar
Sayak Paul committed
1955
                # LyCORIS specificity.
Sayak Paul's avatar
Sayak Paul committed
1956
                if "time.emb.proj" in diffusers_name:
Sayak Paul's avatar
Sayak Paul committed
1957
1958
1959
1960
1961
                    diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
                if "conv.shortcut" in diffusers_name:
                    diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")

                # General coverage.
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
2049
            )
2050

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

2064
        new_state_dict = {**unet_state_dict, **te_state_dict}
2065
        return new_state_dict, network_alphas
2066

2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
2079
2080
2081
        for _, module in self.unet.named_modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)
2082

2083
2084
2085
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

2086
    def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0):
Patrick von Platen's avatar
Patrick von Platen committed
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
2101
2102
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
Patrick von Platen's avatar
Patrick von Platen committed
2103
        """
2104
2105
2106
2107
2108
2109
2110
        if fuse_unet or fuse_text_encoder:
            self.num_fused_loras += 1
            if self.num_fused_loras > 1:
                logger.warn(
                    "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
                )

Patrick von Platen's avatar
Patrick von Platen committed
2111
        if fuse_unet:
2112
            self.unet.fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2113

2114
2115
        if self.use_peft_backend:
            from peft.tuners.tuners_utils import BaseTunerLayer
Patrick von Platen's avatar
Patrick von Platen committed
2116

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
            def fuse_text_encoder_lora(text_encoder, lora_scale=1.0):
                for module in text_encoder.modules():
                    if isinstance(module, BaseTunerLayer):
                        if lora_scale != 1.0:
                            module.scale_layer(lora_scale)

                        module.merge()

        else:
            deprecate("fuse_text_encoder_lora", "0.23", LORA_DEPRECATION_MESSAGE)

            def fuse_text_encoder_lora(text_encoder, lora_scale=1.0):
                for _, attn_module in text_encoder_attn_modules(text_encoder):
                    if isinstance(attn_module.q_proj, PatchedLoraProjection):
                        attn_module.q_proj._fuse_lora(lora_scale)
                        attn_module.k_proj._fuse_lora(lora_scale)
                        attn_module.v_proj._fuse_lora(lora_scale)
                        attn_module.out_proj._fuse_lora(lora_scale)

                for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                    if isinstance(mlp_module.fc1, PatchedLoraProjection):
                        mlp_module.fc1._fuse_lora(lora_scale)
                        mlp_module.fc2._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2140
2141
2142

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
2143
                fuse_text_encoder_lora(self.text_encoder, lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2144
            if hasattr(self, "text_encoder_2"):
2145
                fuse_text_encoder_lora(self.text_encoder_2, lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if unfuse_unet:
            self.unet.unfuse_lora()

2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
        if self.use_peft_backend:
            from peft.tuners.tuner_utils import BaseTunerLayer

            def unfuse_text_encoder_lora(text_encoder):
                for module in text_encoder.modules():
                    if isinstance(module, BaseTunerLayer):
                        module.unmerge()

        else:
            deprecate("unfuse_text_encoder_lora", "0.23", LORA_DEPRECATION_MESSAGE)

            def unfuse_text_encoder_lora(text_encoder):
                for _, attn_module in text_encoder_attn_modules(text_encoder):
                    if isinstance(attn_module.q_proj, PatchedLoraProjection):
                        attn_module.q_proj._unfuse_lora()
                        attn_module.k_proj._unfuse_lora()
                        attn_module.v_proj._unfuse_lora()
                        attn_module.out_proj._unfuse_lora()
Patrick von Platen's avatar
Patrick von Platen committed
2185

2186
2187
2188
2189
                for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                    if isinstance(mlp_module.fc1, PatchedLoraProjection):
                        mlp_module.fc1._unfuse_lora()
                        mlp_module.fc2._unfuse_lora()
Patrick von Platen's avatar
Patrick von Platen committed
2190
2191
2192
2193
2194
2195
2196

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

2197
2198
        self.num_fused_loras -= 1

2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
    def set_adapter_for_text_encoder(
        self,
        adapter_names: Union[List[str], str],
        text_encoder: Optional[PreTrainedModel] = None,
        text_encoder_weights: List[float] = None,
    ):
        """
        Sets the adapter layers for the text encoder.

        Args:
            adapter_names (`List[str]` or `str`):
                The names of the adapters to use.
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
                attribute.
            text_encoder_weights (`List[float]`, *optional*):
                The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
        """
        if not self.use_peft_backend:
            raise ValueError("PEFT backend is required for this method.")

        def process_weights(adapter_names, weights):
            if weights is None:
                weights = [1.0] * len(adapter_names)
            elif isinstance(weights, float):
                weights = [weights]

            if len(adapter_names) != len(weights):
                raise ValueError(
                    f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
                )
            return weights

        adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
        text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError(
                "The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
            )
        set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)

    def disable_lora_for_text_encoder(self, text_encoder: Optional[PreTrainedModel] = None):
        """
        Disables the LoRA layers for the text encoder.

        Args:
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to disable the LoRA layers for. If `None`, it will try to get the
                `text_encoder` attribute.
        """
        if not self.use_peft_backend:
            raise ValueError("PEFT backend is required for this method.")

        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError("Text Encoder not found.")
        set_adapter_layers(text_encoder, enabled=False)

    def enable_lora_for_text_encoder(self, text_encoder: Optional[PreTrainedModel] = None):
        """
        Enables the LoRA layers for the text encoder.

        Args:
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
                attribute.
        """
        if not self.use_peft_backend:
            raise ValueError("PEFT backend is required for this method.")
        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError("Text Encoder not found.")
        set_adapter_layers(self.text_encoder, enabled=True)

1lint's avatar
1lint committed
2274

Patrick von Platen's avatar
Patrick von Platen committed
2275
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
2276
2277
2278
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
2279
2280

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
2281
2282
2283
2284
2285
2286
2287
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
2288
        r"""
2289
2290
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
2291
2292
2293
2294

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
2295
2296
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
2297
2298
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
2299
2300
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
2301
2302
2303
2304
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
2305
2306
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
2307
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
2308
2309
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
2310
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
2311
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
2312
2313
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
2314
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
2315
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
2316
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
2317
2318
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
2319
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
2320
2321
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
2322
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2323
2324
2325
2326
2327
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
2328
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
2329
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2330
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
2331
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
2332
2333
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
2334
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
2335
2336
2337
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
2338
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
2339
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
2340
2341
2342
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
2343
                Whether to load the safety checker or not.
2344
2345
2346
2347
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
2348
2349
2350
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
2351
2352
2353
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
2354
2355
2356
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
2357
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
2358
2359
2360
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
2361
2362
2363
2364
2365
2366
2367

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
2368
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2369
2370
2371
2372
2373
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
2374
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
2375
2376

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
2377
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2378
2379
2380
2381
2382
2383
2384
2385
2386
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

2387
        original_config_file = kwargs.pop("original_config_file", None)
2388
        config_files = kwargs.pop("config_files", None)
1lint's avatar
1lint committed
2389
2390
2391
2392
2393
2394
2395
2396
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
2397
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
2398
2399
2400
2401
2402
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
2403
        text_encoder = kwargs.pop("text_encoder", None)
2404
        vae = kwargs.pop("vae", None)
2405
        controlnet = kwargs.pop("controlnet", None)
2406
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
2407
2408
2409

        torch_dtype = kwargs.pop("torch_dtype", None)

2410
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
2411
2412
2413
2414
2415

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

2416
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
2417
2418
2419
2420
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
2421
        model_type = None
1lint's avatar
1lint committed
2422

2423
2424
2425
2426
2427
2428
2429
2430
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

2431
            # Model type will be inferred from the checkpoint.
2432
2433
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
2434
        elif "StableDiffusion" in pipeline_name:
2435
2436
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
2437
        elif pipeline_name == "StableUnCLIPPipeline":
2438
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2439
2440
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2441
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2442
2443
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
2444
            model_type = "PaintByExample"
1lint's avatar
1lint committed
2445
        elif pipeline_name == "LDMTextToImagePipeline":
2446
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
2447
2448
2449
2450
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
2451
2452
2453
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
2454
2455
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2456
                has_valid_url_prefix = True
1lint's avatar
1lint committed
2457
2458
2459
2460

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
2461
2462
2463
2464
2465
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
2466
            # get repo_id and (potentially nested) file path of ckpt in repo
2467
2468
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
2502
            text_encoder=text_encoder,
2503
            vae=vae,
2504
            tokenizer=tokenizer,
2505
            original_config_file=original_config_file,
2506
            config_files=config_files,
1lint's avatar
1lint committed
2507
2508
2509
2510
2511
2512
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2617
        use_safetensors = kwargs.pop("use_safetensors", None)
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
2697
            load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
2698
2699
2700
2701
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
2702
            vae.to(dtype=torch_dtype)
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2789
        use_safetensors = kwargs.pop("use_safetensors", None)
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878


class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
    """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""

    # Overrride to properly handle the loading and unloading of the additional text encoder.
    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
            kwargs (`dict`, *optional*):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

2879
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2880
2881
2882
2883
2884
        state_dict, network_alphas = self.lora_state_dict(
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
2885
2886
2887
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
2888

2889
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet, _pipeline=self)
2890
2891
2892
2893
2894
2895
2896
2897
        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
        if len(text_encoder_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder,
                prefix="text_encoder",
                lora_scale=self.lora_scale,
2898
                _pipeline=self,
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
            )

        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
        if len(text_encoder_2_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_2_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder_2,
                prefix="text_encoder_2",
                lora_scale=self.lora_scale,
2909
                _pipeline=self,
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
            )

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
            )

        if unet_lora_layers:
            state_dict.update(pack_weights(unet_lora_layers, "unet"))

        if text_encoder_lora_layers and text_encoder_2_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def _remove_text_encoder_monkey_patch(self):
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
        if self.use_peft_backend:
            recurse_remove_peft_layers(self.text_encoder)
            # TODO: @younesbelkada handle this in transformers side
            del self.text_encoder.peft_config
            self.text_encoder._hf_peft_config_loaded = None

            recurse_remove_peft_layers(self.text_encoder_2)

            del self.text_encoder_2.peft_config
            self.text_encoder_2._hf_peft_config_loaded = None
        else:
            self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
            self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)