simplify_algebra.cpp 49.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Merge  
Paul committed
207
<<<<<<< HEAD
Paul's avatar
Paul committed
208
209
210
211
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
212
213
214
215
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
216
217
218
219
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
220
        auto ins     = r.result;
Paul's avatar
Paul committed
221
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
222
223
224
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
225
226
227
228

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
229
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
230
231
232
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
233
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
234
                return m.end();
Paul's avatar
Format  
Paul committed
235
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
236
237
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
238
239
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
240
241
242
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
243
244
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
245
246
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
247
248
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
249
250
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
251
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
252
        {
Paul's avatar
Format  
Paul committed
253
            if(a_ins->can_eval())
Paul's avatar
Paul committed
254
255
256
257
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
258
259
        else
        {
Paul's avatar
Paul committed
260
261
262
            return;
        }

Paul's avatar
Format  
Paul committed
263
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
264
265
266
267
268
269
270
271
272
273
274
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
275
276
277
278
        auto mul             = match::name("mul")(
            match::used_once(),
            match::either_arg(0, 1)(const_broadcast.bind("d"),
                                    match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
294
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
295
296
            return;

Paul's avatar
Format  
Paul committed
297
298
299
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
300
                return;
Paul's avatar
Format  
Paul committed
301
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
302
303
304
                return;
        }

Paul's avatar
Format  
Paul committed
305
306
        auto broadcast_v = d_ins->get_operator().to_value();
        auto c_lens      = c_ins->get_shape().lens();
Paul's avatar
Paul committed
307
308
309
310
311
312
313
314
        std::vector<int64_t> permutation(c_lens.size());
        std::iota(permutation.begin(), permutation.end(), 0);
        if(c_ins == b_ins)
        {
            std::swap(permutation.back(), permutation[permutation.size() - 2]);
            c_lens = reorder_dims(c_lens, permutation);
        }
        broadcast_v["out_lens"] = c_lens;
Paul's avatar
Format  
Paul committed
315
316
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Format  
Paul committed
317
318
        auto db_transpose_ins =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", permutation}}), db_ins);
Paul's avatar
Paul committed
319
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_transpose_ins);
Paul's avatar
Paul committed
320

Paul's avatar
Format  
Paul committed
321
        if(c_ins == b_ins)
Paul's avatar
Paul committed
322
323
324
325
326
327
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
328
            a_ins = cd_ins;
Paul's avatar
Paul committed
329
330
331
332
333
334
335
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

Paul's avatar
Paul committed
336
// a * (x + b) => a * x + a * b
Paul's avatar
Merge  
Paul committed
337
=======
338
339
340
341
342
343
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Merge  
Paul committed
344
>>>>>>> develop
Paul's avatar
Paul committed
345
346
347
348
349
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
350
351
352
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
353
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
354
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
355
                match::used_once()),
Paul's avatar
Paul committed
356
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
357
358
    }

359
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
360
    {
Paul's avatar
Paul committed
361
        auto ins   = r.result;
Paul's avatar
Paul committed
362
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
363
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
364
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
365
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
366

367
368
369
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
370
371
372
    }
};

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
435
struct find_add_lit_broadcast
Paul's avatar
Paul committed
436
437
438
439
440
441
442
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

443
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
444
445
446
447
448
449
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

450
451
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
452
453
454
455
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
456
{
Paul's avatar
Paul committed
457
458
    auto matcher() const
    {
Paul's avatar
Paul committed
459
        return match::name("add")(
Paul's avatar
Paul committed
460
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
461
462
    }

463
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
464
    {
Paul's avatar
Paul committed
465
466
467
468
469
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
470
471
472

        instruction_ref sumab;

Paul's avatar
Paul committed
473
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
474
475
476
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
477
            auto op     = a_ins->get_operator();
478
            auto presum = m.insert_instruction(
479
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
480
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
481
482
483
        }
        else
        {
484
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
485
486
        }

487
488
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
489
490
491
    }
};

Paul's avatar
Paul committed
492
493
struct find_inner_broadcast
{
494
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
495

496
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
497
    {
498
499
500
501
502
503
504
505
506
507
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
508
509
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
510
           }))
Paul's avatar
Paul committed
511
512
            return;

513
514
515
516
517
518
519
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
520
521
522
    }
};

523
struct find_concat_op
524
525
526
{
    auto matcher() const
    {
527
        return match::name("concat")(match::any_of[match::inputs()](
528
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
529
530
    }

531
532
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
533
    {
534
535
536
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
537
        {
538
            dim += ins->get_shape().lens().at(axis);
539
        }
540
541
542
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
543
544
    }

545
546
547
548
549
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

550
    void apply(module& m, const match::matcher_result& r) const
551
    {
552
553
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
554

555
556
557
558
559
560
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
561
562
            auto op = x->get_operator();
            if(not is_valid_op(op))
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
583
                auto concat =
584
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
585
586
                concats.push_back(concat);
            }
587
            auto y = m.insert_instruction(ins, op, concats);
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
603
            m.replace_instruction(ins, args.front());
604
        else
605
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
606
607
608
    }
};

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
665
666
667
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
668
669
    }

Shucai Xiao's avatar
Shucai Xiao committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

689
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
690
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
707

708
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
709
710
711
712
713
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
714
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
715
716
                }

717
718
719
720
721
722
723
724
725
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

751
    void apply(module& m, const match::matcher_result& r) const
752
    {
Shucai Xiao's avatar
Shucai Xiao committed
753
        auto ins    = r.result;
754
755
756
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
757

758
        for(const auto& group : get_split_groups(m, splits))
759
        {
Shucai Xiao's avatar
Shucai Xiao committed
760
761
762
763
764
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
765
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
766
            }
767
768
769
770
771
772

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
773
            instruction_ref c = m.end();
774
775
            if(start->inputs().size() == 1)
            {
776
                c = m.insert_instruction(std::next(ins), op, ins);
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

802
                move_instructions_back(m, ins, data_args);
803
804
805
806
807
808
809

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
810
                auto concat = m.insert_instruction(
811
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
812
813
814
815
816

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
817
                c               = m.insert_instruction(std::next(ins), op, args);
818
            }
819
            if(c != m.end())
820
821
822
823
824
825
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
826
827
                    auto outputs = i->outputs();
                    for(auto output : outputs)
828
                    {
829
                        if(output->name() != "reshape")
830
                            continue;
831
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
832
                        m.replace_instruction(output, output->get_operator(), x);
833
834
                    }

835
                    m.replace_instruction(i, split->get_operator(), c);
836
837
838
839
840
841
842
843
844
845
846
847
848
849
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

850
    void apply(module& m, const match::matcher_result& r) const
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
879
880
881
882
883
884
885
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
886
887
888
889
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
890
            m.replace_instruction(concat, args.front());
891
        else
892
            m.replace_instruction(concat, concat->get_operator(), args);
893
894
895
    }
};

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

935
    void apply(module& m, const match::matcher_result& r) const
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
964
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
965
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
966
967
968
969
970
971
972
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
973
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
974
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
975
976
977
978
979
980
981
982
                }
                else
                    return;
            }
            else
                return;
        }

983
        auto concat_input =
984
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
985
        auto concat_weights =
986
987
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
988
989
990
    }
};

991
992
993
994
995
996
997
998
999
1000
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
1001
    return (dots >= 2 or convs >= 2);
1002
1003
1004
1005
1006
1007
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

1008
    void apply(module& m, const match::matcher_result& r) const
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
1021
            // Check that non-axes match
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1036
1037
1038
1039
1040
1041
1042
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1055
            move_instructions_back(m, input, args);
1056
            // TODO: Check if axes match
1057
            auto concat =
1058
1059
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1060
1061
1062
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1063
1064
1065
1066
1067
1068
1069
1070
1071
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1072
                int64_t len = arg->get_shape().lens()[axis];
1073
                m.replace_instruction(
1074
1075
1076
1077
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1078
1079
1080
1081
1082
1083
1084
1085
1086
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1087
1088
1089
1090
1091
1092
1093
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1094
    void apply(module& m, const match::matcher_result& r) const
1095
1096
1097
1098
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1099
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1100
1101
1102

        auto args = ins->inputs();

1103
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1104
1105
1106
    }
};

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1149
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1174
1175
1176
1177
1178
1179
1180
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1181
    void apply(module& m, const match::matcher_result& r) const
1182
1183
1184
1185
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1186
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1187
1188
1189

        auto args = ins->inputs();

1190
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1191
1192
1193
    }
};

kahmed10's avatar
kahmed10 committed
1194
1195
1196
1197
1198
1199
1200
1201
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1202
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1203
1204
1205
1206
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1207
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1208
1209
1210
    }
};

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1227
    void apply(module& m, const match::matcher_result& r) const
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1253
1254
1255
1256
1257
1258
1259
1260
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1261
        if(not same_ops(vec_rsp))
1262
1263
1264
1265
1266
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1277
1278
1279

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1280
        if(ait == rsp_strides.end())
1281
1282
1283
        {
            return;
        }
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1297
        // calculate reshape output shape
1298
        std::vector<int64_t> vec_dims(vec_rsp.size());
1299

1300
1301
1302
1303
1304
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1305

1306
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1307

1308
1309
1310
1311
1312
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1313
        auto rsp_ins = m.insert_instruction(
1314
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1315
1316

        // replace the original reshape with slice
1317
1318
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1319
        {
1320
            m.replace_instruction(
1321
1322
1323
1324
1325
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1326
            start += vec_dims[i];
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1339
    void apply(module& m, const match::matcher_result& r) const
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1359
        if(not same_ops(vec_trans))
1360
1361
1362
1363
1364
        {
            return;
        }

        // insert an transpose instruction
1365
        auto tr = m.insert_instruction(
1366
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1367
1368
1369
1370
1371

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1372
        int64_t axis_new = std::distance(perm.begin(), it);
1373
1374
1375
1376
1377
1378
1379

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1380
            m.replace_instruction(
1381
1382
1383
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1384
1385
1386
1387
        }
    }
};

1388
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1389
{
Paul's avatar
Paul committed
1390
    // Run simplifications multiple times
1391
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1392
    {
1393
        match::find_matches(m,
Paul's avatar
Paul committed
1394
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1395
1396
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1397
                            find_add_convs{},
1398
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1399
                            find_mul_conv{},
1400
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1401
1402
                            find_mul_dot{},
                            find_dot_mul{},
1403
                            find_mul_add{},
1404
1405
1406
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1407
                            find_dot_add{},
1408
                            find_conv_add{},
1409
1410
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1411
                            find_rsqrt{},
1412
                            find_concat_op{},
1413
                            find_split_concat{},
1414
1415
1416
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1417
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1418
    }
Paul's avatar
Paul committed
1419
}
Paul's avatar
Paul committed
1420

Paul's avatar
Paul committed
1421
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1422
} // namespace migraphx