simplify_algebra.cpp 36.1 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/add.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/op/mul.hpp>
6
#include <migraphx/op/concat.hpp>
7
#include <migraphx/op/slice.hpp>
8
#include <migraphx/op/convolution.hpp>
9
#include <migraphx/op/contiguous.hpp>
10
#include <migraphx/op/as_shape.hpp>
Paul's avatar
Paul committed
11
#include <migraphx/op/broadcast.hpp>
12
13
#include <migraphx/op/neg.hpp>
#include <migraphx/op/recip.hpp>
14
#include <migraphx/op/reshape.hpp>
kahmed10's avatar
kahmed10 committed
15
#include <migraphx/op/rsqrt.hpp>
16
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
17
18
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
19
20
21
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

22
#include <migraphx/algorithm.hpp>
Paul's avatar
Paul committed
23

Paul's avatar
Paul committed
24
namespace migraphx {
Paul's avatar
Paul committed
25
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
26

Paul's avatar
Paul committed
27
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
28
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
29
30
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
31
32
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
33
34
}

Paul's avatar
Paul committed
35
36
auto conv_const_weights()
{
Paul's avatar
Paul committed
37
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
38
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
39
40
}

Shucai Xiao's avatar
Shucai Xiao committed
41
42
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
43
44
45
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
46
    {
Paul's avatar
Paul committed
47
48
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
49
    }
Paul's avatar
Paul committed
50

51
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
52
    {
Paul's avatar
Paul committed
53
        auto ins      = r.result;
Paul's avatar
Paul committed
54
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
55
56
57
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
58
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
59
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
60
61
            return;

Paul's avatar
Paul committed
62
        auto new_a = p.insert_instruction(
63
64
65
66
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul  = p.insert_instruction(ins, make_op("mul"), new_a, w_ins);
Paul's avatar
Paul committed
67
68
        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
Paul's avatar
Paul committed
69
        p.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71
72
};

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

89
    void apply(module& p, match::matcher_result r) const
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
        auto slice_w_ins = p.insert_instruction(ins, w_slice_op, w_ins);

        auto new_a = p.insert_instruction(
128
129
130
131
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", slice_w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul = p.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
132
133
134

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
135
136
137
138
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
139
140
141
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
142
143
144
145
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
146

147
148
        auto new_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

        auto slice1 = p.insert_instruction(ins, slice_op, new_conv);
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
        p.replace_instruction(ins, slice1);
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
        for(auto output : conv_ins->outputs())
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
164
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
165
166
167
168
169
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
170
171
172
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
173
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
174
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
175
                match::used_once()),
Paul's avatar
Paul committed
176
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
177
178
    }

179
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
180
    {
Paul's avatar
Paul committed
181
        auto ins   = r.result;
Paul's avatar
Paul committed
182
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
183
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
184
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
185
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
186

187
188
189
        auto ax_ins = p.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = p.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
190
191
192
    }
};

Paul's avatar
Paul committed
193
struct find_add_lit_broadcast
Paul's avatar
Paul committed
194
195
196
197
198
199
200
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

201
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
202
203
204
205
206
207
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

208
209
        auto sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
210
211
212
213
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
214
{
Paul's avatar
Paul committed
215
216
    auto matcher() const
    {
Paul's avatar
Paul committed
217
        return match::name("add")(
Paul's avatar
Paul committed
218
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
219
220
    }

221
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
222
    {
Paul's avatar
Paul committed
223
224
225
226
227
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
228
229
230

        instruction_ref sumab;

Paul's avatar
Paul committed
231
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
232
233
234
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
235
236
237
            auto op     = a_ins->get_operator();
            auto presum = p.insert_instruction(
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
Paul's avatar
Paul committed
238
            sumab = p.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
239
240
241
        }
        else
        {
242
            sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
243
244
        }

245
246
        auto sumxy = p.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        p.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
247
248
249
    }
};

Paul's avatar
Paul committed
250
251
252
253
struct find_inner_broadcast
{
    auto matcher() const
    {
254
255
        return pointwise(
            match::nargs(2),
Paul's avatar
Paul committed
256
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
257
258
    }

259
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
260
261
262
263
264
265
266
267
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
268
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
269
270
            return;

Paul's avatar
Paul committed
271
272
        auto op = p.insert_instruction(
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
Paul's avatar
Paul committed
273
274
275
276
        p.replace_instruction(ins, xbroadcast, op);
    }
};

277
struct find_concat_op
278
279
280
{
    auto matcher() const
    {
281
        return match::name("concat")(match::any_of[match::inputs()](
282
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
283
284
    }

285
286
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
287
    {
288
289
290
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
291
        {
292
            dim += ins->get_shape().lens().at(axis);
293
        }
294
295
296
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
297
298
    }

299
300
301
302
303
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

304
    void apply(module& p, const match::matcher_result& r) const
305
    {
306
307
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
308

309
310
311
312
313
314
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
315
316
            auto op = x->get_operator();
            if(not is_valid_op(op))
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
337
338
                auto concat =
                    p.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
                concats.push_back(concat);
            }
            auto y = p.insert_instruction(ins, op, concats);
            return {y};

        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
            p.replace_instruction(ins, args.front());
        else
360
            p.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
361
362
363
    }
};

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
402
403
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    }

    static std::vector<std::vector<instruction_ref>>
    get_split_groups(const std::vector<instruction_ref>& splits)
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
                // If there is a duplicate bail
                if(contains(group, *it))
                    return {};
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

461
    void apply(module& p, const match::matcher_result& r) const
462
463
464
465
466
467
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
468

469
470
        for(const auto& group : get_split_groups(splits))
        {
Shucai Xiao's avatar
Shucai Xiao committed
471
472
473
474
475
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
476
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
477
            }
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
            instruction_ref c = p.end();
            if(start->inputs().size() == 1)
            {
                c = p.insert_instruction(std::next(ins), op, ins);
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
                    p.move_instructions(data, ins);

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
522
523
                auto concat = p.insert_instruction(
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
                c               = p.insert_instruction(std::next(ins), op, args);
            }
            if(c != p.end())
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
                    for(auto output : i->outputs())
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
542
543
                        auto x =
                            p.insert_instruction(output, make_op("contiguous"), output->inputs());
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
                        p.replace_instruction(output, output->get_operator(), x);
                    }

                    p.replace_instruction(i, split->get_operator(), c);
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

562
    void apply(module& p, const match::matcher_result& r) const
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
591
592
593
594
595
596
597
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
598
599
600
601
602
603
604
605
606
607
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
            p.replace_instruction(concat, args.front());
        else
            p.replace_instruction(concat, concat->get_operator(), args);
    }
};

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

    static shape compute_stride_shape(const shape& input, std::size_t n)
    {
        return {input.type(),
650
651
652
653
                {input.lens()[0],
                 input.lens()[1],
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[2] - 1) / n + 1)),
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[3] - 1) / n + 1))},
654
655
656
657
658
659
                {input.strides()[0],
                 input.strides()[1],
                 input.strides()[2] * n,
                 input.strides()[3] * n}};
    }

660
    void apply(module& p, match::matcher_result r) const
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
                    b_input = p.insert_instruction(
690
691
692
693
694
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(b_input->get_shape(), n))}}),
                        b_input);
695
696
697
698
699
700
701
702
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
                    a_input = p.insert_instruction(
703
704
705
706
707
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(a_input->get_shape(), n))}}),
                        a_input);
708
709
710
711
712
713
714
715
                }
                else
                    return;
            }
            else
                return;
        }

716
717
718
719
        auto concat_input =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
        auto concat_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
720
721
722
723
        p.replace_instruction(ins, new_op, concat_input, concat_weights);
    }
};

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

741
    void apply(module& p, const match::matcher_result& r) const
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
769
770
771
772
773
774
775
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
                p.move_instructions(arg, input);
            // TODO: Check if axises match
791
792
            auto concat =
                p.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
793
            auto fused     = p.insert_instruction(std::next(input), op, input, concat);
794
795
796
797
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
798
799
800
801
802
                p.replace_instruction(
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
803
804
805
806
807
808
809
810
811
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

812
813
814
815
816
817
818
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

819
    void apply(module& p, match::matcher_result r) const
820
821
822
823
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

824
        auto recip = p.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
825
826
827

        auto args = ins->inputs();

828
        p.replace_instruction(ins, make_op("mul"), args.front(), recip);
829
830
831
832
833
834
835
836
837
838
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

839
    void apply(module& p, match::matcher_result r) const
840
841
842
843
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

844
        auto neg = p.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
845
846
847

        auto args = ins->inputs();

848
        p.replace_instruction(ins, make_op("add"), args.front(), neg);
849
850
851
    }
};

kahmed10's avatar
kahmed10 committed
852
853
854
855
856
857
858
859
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

860
    void apply(module& p, match::matcher_result r) const
kahmed10's avatar
kahmed10 committed
861
862
863
864
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

865
        p.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
866
867
868
    }
};

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

885
    void apply(module& p, match::matcher_result r) const
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
913
914
915
916
917
918
919
920
921
922
923
924
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
925
926
927
        {
            return;
        }
928
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
929
930

        // calculate reshape output shape
931
932
933
934
935
936
937
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
938
939

        // insert the reshape instruction
940
941
        auto rsp_ins = p.insert_instruction(
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
942
943

        // replace the original reshape with slice
944
945
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
946
947
        {
            p.replace_instruction(
948
949
950
951
952
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
953
            start += vec_dims[i];
954
955
956
957
958
959
960
961
962
963
964
965
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

966
    void apply(module& p, match::matcher_result r) const
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
992
993
        auto tr =
            p.insert_instruction(std::next(input), make_op("transpose", {{"dims", perm}}), input);
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
        auto axis_new = static_cast<int64_t>(std::distance(perm.begin(), it));

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1007
1008
1009
1010
            p.replace_instruction(
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1011
1012
1013
1014
        }
    }
};

1015
void simplify_algebra::apply(module& p) const
Paul's avatar
Paul committed
1016
{
Paul's avatar
Paul committed
1017
    // Run simplifications multiple times
1018
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1019
    {
Paul's avatar
Paul committed
1020
        match::find_matches(p,
Paul's avatar
Paul committed
1021
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1022
1023
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1024
                            find_add_convs{},
1025
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1026
                            find_mul_conv{},
1027
                            find_mul_slice_conv{},
1028
                            find_mul_add{},
1029
1030
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1031
                            find_rsqrt{},
1032
                            find_concat_op{},
1033
                            find_split_concat{},
1034
1035
1036
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
Paul's avatar
Paul committed
1037
1038
        dead_code_elimination{}.apply(p);
    }
Paul's avatar
Paul committed
1039
}
Paul's avatar
Paul committed
1040

Paul's avatar
Paul committed
1041
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1042
} // namespace migraphx