Commit f7079e51 authored by Paul's avatar Paul
Browse files

Merge

parents 79eac1b8 f6e22d56
......@@ -32,6 +32,10 @@ Disable fast math optimization
Perform an exhaustive search to find the fastest version of generated kernels for selected backend
.. options:: --split-single-dyn-dim
Enable the split single dynamic dimension pass
.. option:: --fp16
Quantize for fp16
......
......@@ -24,7 +24,7 @@ Load as MIGraphX JSON
.. option:: --batch [unsigned int] (Default: 1)
Set batch size for model
For a static model, set batch size. For a dynamic batch model, sets the batch size at runtime.
.. option:: --nhwc
......@@ -46,6 +46,14 @@ Trim instructions from the end (Default: 0)
Dim of a parameter (format: "@name d1 d2 dn")
.. options:: --dyn-input-dim [std::vector<std::string>]
Set dynamic dimensions of a parameter using JSON formatting (format "@name" "dynamic_dimension_json")
.. options:: --default-dyn-dim
Set the default dynamic dimension (format {min:x, max:y, optimals:[o1,o2,...]})
.. option:: --optimize, -O
Optimize when reading
......
......@@ -29,7 +29,7 @@ See below for a comprehensive list of commands and option arguments, as well as
| --tf | Load file as a tensorflow graph |
| --migraphx | Load file as a migraphx graph |
| --migraphx-json | Load file as a migraphx JSON graph |
| --batch | Set batch size for the model |
| --batch | For a static model, set batch size. For a dynamic batch model, sets the batch size at runtime.|
| --nhwc | Treat tensorflow format as nhwc |
| --nchw | Treat tensorflow format as nchw |
| --skip-unknown-operators | Skip unknown operators when parsing and continue to parse |
......@@ -44,12 +44,16 @@ See below for a comprehensive list of commands and option arguments, as well as
| --output \| -o | Output to file |
| --fill0 | Fill parameter with 0s |
| --fill1 | Fill parameter with 1s |
| --input-dim | Set static dimensions of a parameter |
| --dyn-input-dim | Set dynamic dimensions of a parameter |
| --default-dyn-dim | Set default dynamic dimension |
| --gpu | Compile on the gpu |
| --cpu | Compile on the cpu |
| --ref | Compile on the reference implementation |
| --enable-offload-copy | Enable implicit offload copying |
| --disable-fast-math | Disable fast math optimization |
| --exhaustive-tune | Enable exhaustive search to find fastest kernel |
| --split-single-dyn-dim | Enable split_single_dyn_dim compiler pass |
| --fp16 | Quantize for fp16 |
| --int8 | Quantize for int8 |
| --tolerance | Tolerance for errors |
......
......@@ -50,6 +50,7 @@ add_library(migraphx
env.cpp
file_buffer.cpp
fuse_pointwise.cpp
fuse_reduce.cpp
generate.cpp
inline_module.cpp
insert_pad.cpp
......@@ -73,6 +74,7 @@ add_library(migraphx
process.cpp
program.cpp
propagate_constant.cpp
promote_literals.cpp
quantization.cpp
quantize_fp16.cpp
quantize_int8.cpp
......@@ -91,6 +93,7 @@ add_library(migraphx
shape.cpp
simplify_algebra.cpp
simplify_reshapes.cpp
split_single_dyn_dim.cpp
tmp_dir.cpp
value.cpp
verify_args.cpp
......
......@@ -89,8 +89,8 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
}
else if(a == 1 or b == 1)
{
// setting opt to 0, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0};
// setting optimals to empty, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max)};
}
else
{
......@@ -148,10 +148,8 @@ shape common_shape(const std::vector<shape>& shapes)
return {compute_common_types(shapes), compute_common_lens(shapes)};
}
instruction_ref insert_common_op(module& m,
instruction_ref ins,
const operation& op,
std::vector<instruction_ref> inputs)
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs)
{
if(std::any_of(
inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
......@@ -210,7 +208,20 @@ instruction_ref insert_common_op(module& m,
return input;
});
}
return m.insert_instruction(ins, op, inputs);
return inputs;
}
std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs)
{
return insert_common_args(m, m.end(), std::move(inputs));
}
instruction_ref insert_common_op(module& m,
instruction_ref ins,
const operation& op,
std::vector<instruction_ref> inputs)
{
return m.insert_instruction(ins, op, insert_common_args(m, ins, std::move(inputs)));
}
instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
......
......@@ -106,6 +106,13 @@ cpp_generator::function& cpp_generator::function::set_generic_types(const module
return *this;
}
cpp_generator::function& cpp_generator::function::add_generic_param(const std::string& pname)
{
params.push_back({pname, "T" + pname});
tparams.push_back("class T" + pname);
return *this;
}
struct cpp_generator_impl
{
std::stringstream fs{};
......@@ -182,7 +189,8 @@ std::string cpp_generator::generate_point_op(const operation& op,
std::string cpp_generator::str() const { return impl->fs.str(); }
cpp_generator::function cpp_generator::generate_module(const module& m)
cpp_generator::function cpp_generator::generate_module(const module& m,
const generate_module_callback& g)
{
function f;
auto name = transform_string(m.name(), [](char c) {
......@@ -195,13 +203,7 @@ cpp_generator::function cpp_generator::generate_module(const module& m)
if(ins->name() == "@literal")
return shape::cpp_type(ins->get_shape().type()) + "(" +
ins->get_literal().to_string() + ")";
std::vector<std::string> args;
std::transform(ins->inputs().begin(),
ins->inputs().end(),
std::back_inserter(args),
[&](auto i) { return names.at(i); });
auto s = this->generate_point_op(ins->get_operator(), args);
auto s = g(ins, names);
if(impl->fresult)
return impl->fresult(ins->get_shape()) + '(' + s + ')';
else
......@@ -210,6 +212,24 @@ cpp_generator::function cpp_generator::generate_module(const module& m)
return f;
}
std::vector<std::string>
cpp_generator::to_args(const std::vector<instruction_ref>& inputs,
const std::unordered_map<instruction_ref, std::string>& names)
{
std::vector<std::string> args;
std::transform(inputs.begin(), inputs.end(), std::back_inserter(args), [&](auto i) {
return names.at(i);
});
return args;
}
cpp_generator::function cpp_generator::generate_module(const module& m)
{
return this->generate_module(m, [&](auto ins, const auto& names) {
return this->generate_point_op(ins->get_operator(), to_args(ins->inputs(), names));
});
}
std::string cpp_generator::create_function(const cpp_generator::function& f)
{
impl->function_count++;
......
......@@ -148,13 +148,21 @@ struct value_parser
template <MIGRAPHX_REQUIRES(not std::is_enum<T>{} and not is_multi_value<T>{})>
static T apply(const std::string& x)
{
T result;
std::stringstream ss;
ss.str(x);
ss >> result;
if(ss.fail())
throw std::runtime_error("Failed to parse '" + x + "' as " + type_name<T>::apply());
return result;
// handle whitespace in string
if constexpr(std::is_same<T, std::string>{})
{
return x;
}
else
{
T result;
std::stringstream ss;
ss.str(x);
ss >> result;
if(ss.fail())
throw std::runtime_error("Failed to parse '" + x + "' as " + type_name<T>::apply());
return result;
}
}
template <MIGRAPHX_REQUIRES(std::is_enum<T>{} and not is_multi_value<T>{})>
......
......@@ -33,6 +33,7 @@
#include <migraphx/tf.hpp>
#include <migraphx/onnx.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/convert_to_json.hpp>
#include <migraphx/load_save.hpp>
#include <migraphx/json.hpp>
#include <migraphx/version.h>
......@@ -68,7 +69,9 @@ struct loader
bool brief = false;
std::string output_type;
std::string output;
std::string default_dyn_dim;
std::vector<std::string> param_dims;
std::vector<std::string> dyn_param_dims;
std::vector<std::string> output_names;
void parse(argument_parser& ap)
......@@ -83,7 +86,11 @@ struct loader
ap(file_type, {"--tf"}, ap.help("Load as tensorflow"), ap.set_value("tf"));
ap(file_type, {"--migraphx"}, ap.help("Load as MIGraphX"), ap.set_value("migraphx"));
ap(file_type, {"--migraphx-json"}, ap.help("Load as MIGraphX JSON"), ap.set_value("json"));
ap(batch, {"--batch"}, ap.help("Set batch size for model"));
ap(batch,
{"--batch"},
ap.help("For a static model, sets default_dim_value size (commonly batch size). For a "
"dynamic batch model, sets the batch "
"size at runtime."));
ap(is_nhwc, {"--nhwc"}, ap.help("Treat tensorflow format as nhwc"), ap.set_value(true));
ap(skip_unknown_operators,
{"--skip-unknown-operators"},
......@@ -96,7 +103,16 @@ struct loader
ap.help("Dim of a parameter (format: \"@name d1 d2 dn\")"),
ap.append(),
ap.nargs(2));
ap(dyn_param_dims,
{"--dyn-input-dim"},
ap.help("Dynamic dimensions of a parameter (format: \"@name_1\" \"[{min:x, max:y, "
"optimals:[o1,o2,...]}, dim2,dim3, ...]\", \"@name_2\", ... You can supply a "
"single integer value for a dimension to specify it as fixed."),
ap.append(),
ap.nargs(2));
ap(default_dyn_dim,
{"--default-dyn-dim"},
ap.help("Default dynamic dimension (format: \"{min:x, max:y, optimals:[o1,o2]}\")."));
ap(output_names,
{"--output-names"},
ap.help("Names of node output (format: \"name_1 name_2 name_n\")"),
......@@ -147,6 +163,40 @@ struct loader
return map_input_dims;
}
static auto parse_dyn_dims_json(const std::string& dd_json)
{
// expecting a json string like "[{min:1,max:64,optimals:[1,2,4,8]},3,224,224]"
auto v = from_json_string(convert_to_json(dd_json));
std::vector<migraphx::shape::dynamic_dimension> dyn_dims;
std::transform(v.begin(), v.end(), std::back_inserter(dyn_dims), [&](auto x) {
if(x.is_object())
return from_value<migraphx::shape::dynamic_dimension>(x);
auto d = x.template to<std::size_t>();
return migraphx::shape::dynamic_dimension{d, d};
});
return dyn_dims;
}
static auto parse_dyn_dims_map(const std::vector<std::string>& param_dyn_dims)
{
// expecting vector of strings formatted like
// {"@param_name_0", "dd_json_0", "@param_name_1", "dd_json_1", ...}
std::unordered_map<std::string, std::vector<shape::dynamic_dimension>> map_dyn_input_dims;
std::string name = "";
for(auto&& x : param_dyn_dims)
{
if(x[0] == '@')
{
name = x.substr(1);
}
else
{
map_dyn_input_dims[name] = parse_dyn_dims_json(x);
}
}
return map_dyn_input_dims;
}
static auto parse_output_names(const std::vector<std::string>& output_names_info)
{
std::vector<std::string> output_node_names;
......@@ -158,13 +208,44 @@ struct loader
return output_node_names;
}
tf_options get_tf_options() const
{
auto map_input_dims = parse_param_dims(param_dims);
auto output_node_names = parse_output_names(output_names);
tf_options options;
options.is_nhwc = is_nhwc;
options.batch_size = batch;
options.map_input_dims = map_input_dims;
options.output_node_names = output_node_names;
return options;
}
onnx_options get_onnx_options() const
{
auto map_input_dims = parse_param_dims(param_dims);
auto map_dyn_input_dims = parse_dyn_dims_map(dyn_param_dims);
onnx_options options;
if(default_dyn_dim.empty())
{
options.default_dim_value = batch;
}
else
{
auto v = from_json_string(convert_to_json(default_dyn_dim));
options.default_dyn_dim_value = from_value<migraphx::shape::dynamic_dimension>(v);
}
options.skip_unknown_operators = skip_unknown_operators;
options.print_program_on_error = true;
options.map_input_dims = map_input_dims;
options.map_dyn_input_dims = map_dyn_input_dims;
return options;
}
program load()
{
program p;
if(model.empty())
{
auto map_input_dims = parse_param_dims(param_dims);
auto output_node_names = parse_output_names(output_names);
if(file_type.empty())
{
if(ends_with(file, ".onnx"))
......@@ -179,16 +260,11 @@ struct loader
std::cout << "Reading: " << file << std::endl;
if(file_type == "onnx")
{
onnx_options options;
options.default_dim_value = batch;
options.skip_unknown_operators = skip_unknown_operators;
options.print_program_on_error = true;
options.map_input_dims = map_input_dims;
p = parse_onnx(file, options);
p = parse_onnx(file, get_onnx_options());
}
else if(file_type == "tf")
{
p = parse_tf(file, tf_options{is_nhwc, batch, map_input_dims, output_node_names});
p = parse_tf(file, get_tf_options());
}
else if(file_type == "json")
{
......@@ -289,14 +365,21 @@ struct program_params
ap(fill1, {"--fill1"}, ap.help("Fill parameter with 1s"), ap.append(), ap.nargs(2));
}
auto generate(const program& p, const target& t, bool offload)
auto generate(const program& p, const target& t, bool offload, unsigned batch)
{
parameter_map m;
auto param_shapes = p.get_parameter_shapes();
std::unordered_map<std::string, shape> static_param_shapes;
std::transform(
param_shapes.cbegin(),
param_shapes.cend(),
std::inserter(static_param_shapes, static_param_shapes.end()),
[&](const auto& x) { return std::make_pair(x.first, x.second.to_static(batch)); });
for(auto&& s : fill0)
m[s] = fill_argument(p.get_parameter_shape(s), 0);
m[s] = fill_argument(static_param_shapes.at(s), 0);
for(auto&& s : fill1)
m[s] = fill_argument(p.get_parameter_shape(s), 1);
fill_param_map(m, p, t, offload);
m[s] = fill_argument(static_param_shapes.at(s), 1);
fill_param_map(m, static_param_shapes, t, offload);
return m;
}
};
......@@ -353,13 +436,18 @@ struct compiler
{"--exhaustive-tune"},
ap.help("Exhastively search for best tuning parameters for kernels"),
ap.set_value(true));
ap(co.split_single_dyn_dim,
{"--split-single-dyn-dim"},
ap.help("If there is a single non-fixed dynamic dimension in the model, then split to "
"static submodules"),
ap.set_value(true));
ap(quantize, {"--fp16"}, ap.help("Quantize for fp16"), ap.set_value(precision::fp16));
ap(quantize, {"--int8"}, ap.help("Quantize for int8"), ap.set_value(precision::int8));
}
auto params(const program& p)
{
return parameters.generate(p, ct.get_target(), co.offload_copy);
return parameters.generate(p, ct.get_target(), co.offload_copy, l.batch);
}
program compile()
......@@ -432,7 +520,7 @@ struct verify : command<verify>
std::cout << p << std::endl;
auto t = c.ct.get_target();
auto m = c.parameters.generate(p, t, true);
auto m = c.parameters.generate(p, t, true, c.l.batch);
if(per_instruction)
{
......
......@@ -39,36 +39,25 @@ auto get_hash(const T& x)
return std::hash<T>{}(x);
}
parameter_map fill_param_map(parameter_map& m, const program& p, const target& t, bool offload)
parameter_map fill_param_map(parameter_map& m,
const std::unordered_map<std::string, shape>& param_shapes,
const target& t,
bool offload)
{
for(auto&& x : p.get_parameter_shapes())
for(auto&& x : param_shapes)
{
argument& arg = m[x.first];
if(arg.empty())
{
assert(not x.second.dynamic());
arg = generate_argument(x.second, get_hash(x.first));
}
if(not offload)
arg = t.copy_to(arg);
}
return m;
}
parameter_map fill_param_map(parameter_map& m, const program& p, bool gpu)
{
for(auto&& x : p.get_parameter_shapes())
{
argument& arg = m[x.first];
if(arg.empty())
arg = generate_argument(x.second, get_hash(x.first));
#ifdef HAVE_GPU
if(gpu)
arg = gpu::to_gpu(arg);
#else
(void)gpu;
#endif
}
return m;
}
parameter_map create_param_map(const program& p, const target& t, bool offload)
{
parameter_map m;
......
......@@ -30,8 +30,10 @@ namespace migraphx {
namespace driver {
inline namespace MIGRAPHX_INLINE_NS {
parameter_map
fill_param_map(parameter_map& m, const program& p, const target& t, bool offload = false);
parameter_map fill_param_map(parameter_map& m,
const std::unordered_map<std::string, shape>& param_shapes,
const target& t,
bool offload = false);
parameter_map create_param_map(const program& p, const target& t, bool offload = false);
parameter_map fill_param_map(parameter_map& m, const program& p, bool gpu);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/fuse_reduce.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/register_op.hpp>
#include <iterator>
#include <map>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct fused_reduce
{
std::vector<std::int64_t> axes{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"));
}
shape compute_shape(const std::vector<shape>& inputs, std::vector<module_ref> mods) const
{
if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule.");
auto* sm = mods.front();
if(sm->get_output_shapes().size() != 1)
MIGRAPHX_THROW("Only one output supported");
auto names = sm->get_parameter_names();
check_shapes{inputs, *this}.has(names.size()).same_ndims();
std::sort(names.begin(), names.end());
auto shapes = sm->get_parameter_shapes();
// Check dimension matches for each input
if(not equal(names, inputs, [&](const auto& name, const auto& input) {
return shapes.at(name).lens() == input.lens();
}))
MIGRAPHX_THROW("Dimenstion does not match the submodule.");
const auto& s = inputs.at(0);
auto lens = s.lens();
if(lens != sm->get_output_shapes().front().lens())
{
for(const auto& axis : axes)
{
lens[axis] = 1;
}
}
return shape::from_permutation(
sm->get_output_shapes().front().type(), lens, find_permutation(inputs));
}
std::string name() const { return "fused_reduce"; }
};
MIGRAPHX_REGISTER_OP(fused_reduce);
static std::unordered_map<instruction_ref, instruction_ref>
get_ins_param_map(const std::vector<instruction_ref>& inputs, const_module_ref sm)
{
std::unordered_map<instruction_ref, instruction_ref> result;
auto names = sm->get_parameter_names();
std::sort(names.begin(), names.end());
assert(names.size() == inputs.size());
std::transform(names.begin(),
names.end(),
inputs.begin(),
std::inserter(result, result.end()),
[&](const auto& name, auto input) {
return std::make_pair(input, sm->get_parameter(name));
});
return result;
}
static void insert_params(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
auto n = sm->get_parameter_shapes().size();
for(auto input : ins->inputs())
{
if(contains(map_ins, input))
continue;
auto s = shape{input->get_shape().type(), input->get_shape().lens()};
map_ins[input] = sm->add_parameter("x" + std::to_string(n++), s);
}
}
static auto insert_ins_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
return sm->add_instructions({ins}, map_ins);
}
static auto insert_ins_in_submodule(module_ref sm, instruction_ref ins)
{
std::unordered_map<instruction_ref, instruction_ref> map_ins;
return insert_ins_in_submodule(sm, ins, map_ins);
}
static auto
insert_module_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
auto* m = ins->module_inputs().front();
auto param_map = get_ins_param_map(ins->inputs(), m);
for(auto&& [input, param] : param_map)
{
map_ins[param] = map_ins.at(input);
}
return sm->add_instructions(m, map_ins);
}
static std::vector<instruction_ref>
find_inputs(module_ref sm,
const module& parent,
const std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
std::vector<instruction_ref> result;
std::map<std::string, instruction_ref> names;
for(auto&& [input, param] : map_ins)
{
if(not sm->has_instruction(param))
continue;
if(param->name() != "@param")
continue;
if(not parent.has_instruction(input))
continue;
auto v = param->get_operator().to_value();
auto name = v.at("parameter").to<std::string>();
names[name] = input;
}
std::transform(names.begin(), names.end(), std::back_inserter(result), [](const auto& p) {
return p.second;
});
assert(result.size() == sm->get_parameter_shapes().size());
return result;
}
static void create_reduce_modules(module_pass_manager& mpm)
{
std::size_t n = 0;
for(auto ins : iterator_for(mpm.get_module()))
{
if(not ins->get_operator().attributes().get("reduce", false))
continue;
if(ins->inputs().size() != 1)
continue;
auto* rm =
mpm.create_module(mpm.get_module().name() + ":" + ins->name() + std::to_string(n++));
rm->set_bypass();
rm->add_return(insert_ins_in_submodule(rm, ins));
auto v = ins->get_operator().to_value();
mpm.get_module().replace_instruction(
ins, make_op("fused_reduce", {{"axes", v["axes"]}}), ins->inputs(), {rm});
}
}
template <class... Ms>
static auto match_broadcast(Ms... ms)
{
return match::skip(match::name("contiguous"))(
match::name("multibroadcast")(match::arg(0)(ms...), match::used_once()).bind("broadcast"));
}
template <class... Ms>
static auto any_input(Ms... ms)
{
return match::any_of[match::inputs()](match::any(ms...).bind("input"));
}
static auto match_broadcastable_input(const std::string& op, const std::string& name)
{
auto match_op = match::name(op)(match::used_once()).bind(name);
auto match_op_input = any_input(match_op, match::used_once());
auto broadcast_match_op_input = any_input(match_broadcast(match_op), match::used_once());
return match::any_of(match_op_input, broadcast_match_op_input);
}
namespace {
struct find_pointwise_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("pointwise", "pointwise"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce = r.result;
auto input = r.instructions["pointwise"];
const auto* pm = input->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(pm->name() + ":" + old_rm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Insert pointwise
auto rins = insert_ins_in_submodule(rm, input, map_ins).front();
map_ins[input] = rins;
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast] = insert_ins_in_submodule(rm, broadcast, map_ins).front();
}
// Insert fused_reduce
rm->add_return(insert_module_in_submodule(rm, reduce, map_ins));
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_pointwise
{
auto matcher() const
{
return match::name("pointwise")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto pw = r.result;
auto reduce = r.instructions["reduce"];
auto input = r.instructions["input"];
const auto* pm = pw->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(old_rm->name() + ":" + pm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy module instructions
insert_module_in_submodule(rm, reduce, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_ins_in_submodule(rm, pw, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(pw, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce1 = r.result;
auto reduce2 = r.instructions["reduce"];
auto input = r.instructions["input"];
if(reduce1->get_operator() != reduce2->get_operator())
return;
const auto* rm1 = reduce1->module_inputs().front();
const auto* rm2 = reduce2->module_inputs().front();
auto* rm = mpm.create_module(rm1->name() + ":" + rm2->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy reduce1 instructions
insert_module_in_submodule(rm, reduce2, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_module_in_submodule(rm, reduce1, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce1, reduce1->get_operator(), new_inputs, {rm});
}
};
} // namespace
void fuse_reduce::apply(module_pass_manager& mpm) const
{
create_reduce_modules(mpm);
mpm.run_pass(dead_code_elimination{});
for(int i = 0; i < 4; i++)
{
match::find_matches(
mpm, find_reduce_pointwise{}, find_pointwise_reduce{}, find_reduce_reduce{});
mpm.run_pass(dead_code_elimination{});
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -41,6 +41,11 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
shape common_shape(const std::vector<shape>& shapes);
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs);
std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs);
instruction_ref insert_common_op(module& m,
instruction_ref ins,
const operation& op,
......
......@@ -32,9 +32,17 @@ inline namespace MIGRAPHX_INLINE_NS {
struct compile_options
{
bool offload_copy = false;
/**
* Have MIGX allocate memory for parameters and add instructions
* to copy parameters and output to/from an offload device like a GPU.
*/
bool offload_copy = false;
bool fast_math = true;
bool exhaustive_tune = false;
/// Use the split_single_dyn_dim pass
bool split_single_dyn_dim = false;
tracer trace{};
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#include <migraphx/config.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/tensor_view.hpp>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class Output, class T, class Padding, class Stride>
void convolution(Output output, T input, T weights, Padding padding, Stride stride, int group)
{
auto output_shape = output.get_shape();
auto in_lens = input.get_shape().lens();
auto wei_lens = weights.get_shape().lens();
auto wei_n = wei_lens[0];
auto wei_c = wei_lens[1];
std::vector<std::size_t> win_size(wei_lens.begin() + 1, wei_lens.end());
par_for(output_shape.elements(), [&](auto i) {
auto idx_o = output_shape.multi(i);
auto w = idx_o[1];
auto n_dim = idx_o.size();
std::vector<std::ptrdiff_t> win_start;
for(std::size_t dim = 2; dim < n_dim; ++dim)
{
auto d_2 = dim - 2;
win_start.push_back(std::ptrdiff_t(idx_o[dim] * stride[d_2]) -
std::ptrdiff_t(padding[d_2]));
}
const auto group_id = w / (wei_n / group);
shape win_shape{output_shape.type(), win_size};
double acc = 0.0;
shape_for_each(win_shape, [&](auto idx_win) {
auto k = idx_win[0];
const auto in_ch = group_id * wei_c + k;
std::vector<std::ptrdiff_t> idx(idx_o.begin(), idx_o.end());
idx[1] = in_ch;
std::transform(idx_win.begin() + 1,
idx_win.end(),
win_start.begin(),
idx.begin() + 2,
[](std::ptrdiff_t ii, std::ptrdiff_t jj) { return ii + jj; });
std::vector<std::ptrdiff_t> idx_wei(idx_o.size());
idx_wei[0] = w;
std::copy(idx_win.begin(), idx_win.end(), idx_wei.begin() + 1);
if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
std::equal(idx.begin(),
idx.end(),
in_lens.begin(),
in_lens.end(),
std::less<std::ptrdiff_t>{}))
{
acc += input(idx.begin(), idx.end()) * weights(idx_wei.begin(), idx_wei.end());
}
});
output[i] = acc;
});
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -77,6 +77,7 @@ struct cpp_generator
function& set_types(const module& m);
function& set_types(const module& m, const std::function<std::string(shape)>& parse);
function& set_generic_types(const module& m);
function& add_generic_param(const std::string& pname);
};
cpp_generator();
......@@ -105,6 +106,10 @@ struct cpp_generator
std::string create_function(const function& f);
static std::vector<std::string>
to_args(const std::vector<instruction_ref>& inputs,
const std::unordered_map<instruction_ref, std::string>& names);
private:
std::unique_ptr<cpp_generator_impl> impl;
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#include <migraphx/config.hpp>
#include <string>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module_pass_manager;
struct fuse_reduce
{
std::string name() const { return "fuse_reduce"; }
void apply(module_pass_manager& mpm) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_FUSE_POINTWISE_HPP
......@@ -347,6 +347,7 @@ match::matcher_result find_match(module& modl, M&& m)
}
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_VALIDATE_MATCHES)
/// Find matches for an instruction in the module
template <class Mod, class... Ms>
......@@ -356,7 +357,11 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
const
#endif
int trace = value_of(MIGRAPHX_TRACE_MATCHES{});
bool match = false;
#if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 5
const
#endif
bool validate = enabled(MIGRAPHX_VALIDATE_MATCHES{});
bool match = false;
each_args(
[&](auto&& m) {
if(match)
......@@ -371,7 +376,20 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
std::cout << "Matched by " << get_type_name(m) << std::endl;
get_module(mod).debug_print(ins);
}
// If its already invalid dont validate it again
bool invalidated = validate and get_module(mod).validate() != get_module(mod).end();
m.apply(mod, r);
if(validate and not invalidated)
{
auto invalid = get_module(mod).validate();
if(invalid != get_module(mod).end())
{
std::cout << "Invalid program from match: " << get_type_name(m) << std::endl;
std::cout << "Invalid instructions: " << std::endl;
get_module(mod).debug_print(invalid->inputs());
get_module(mod).debug_print(invalid);
}
}
match = true;
},
ms...);
......
......@@ -178,6 +178,8 @@ struct module
bool has_instruction(instruction_ref ins) const;
std::vector<instruction_ref> get_returns() const;
std::size_t size() const;
instruction_ref begin() const;
instruction_ref end() const;
......
......@@ -26,6 +26,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <functional>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......
......@@ -37,7 +37,7 @@ struct onnx_options
std::size_t default_dim_value = 0;
/// Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value set
/// parser throws)
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0};
shape::dynamic_dimension default_dyn_dim_value = {1, 1};
/// Explicitly specify the dims of an input
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims = {};
/// Explicitly specify dynamic dims of an input (if both map_input_dims and map_dyn_input_dims
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment