simplify_algebra.cpp 48.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
Paul's avatar
Paul committed
55
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
56
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
57
58
}

Shucai Xiao's avatar
Shucai Xiao committed
59
60
auto reduction() { return match::name_contains("reduce"); }

61
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
62
63
64
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
65
    {
66
67
68
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
69
    }
Paul's avatar
Paul committed
70

71
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
72
    {
Paul's avatar
Paul committed
73
        auto ins      = r.result;
Paul's avatar
Paul committed
74
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
75
76
77
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
102
103
            return;

104
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
105
        auto new_a = m.insert_instruction(
106
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
107
108
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
109
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
110
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
111
    }
Paul's avatar
Paul committed
112
113
};

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

130
    void apply(module& m, const match::matcher_result& r) const
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
166
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
167

168
        auto new_a = m.insert_instruction(
169
            ins,
170
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
171
            a_ins->inputs().front());
172
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
173
174
175

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
176
            sliced_weights.push_back(m.insert_instruction(
177
178
179
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
180
181
182
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
183
            sliced_weights.push_back(m.insert_instruction(
184
185
186
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
187

188
        auto new_weights =
189
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
190

191
        auto new_conv = m.insert_instruction(
192
193
194
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

195
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
196
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
197
        m.replace_instruction(ins, slice1);
198
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
199
200
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
201
202
203
204
205
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
206
207
208
209
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
210
211
212
213
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
214
215
216
217
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
218
        auto ins     = r.result;
Paul's avatar
Paul committed
219
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
220
221
222
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
223
224
225
226

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
227
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
228
229
230
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
231
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
232
                return m.end();
Paul's avatar
Format  
Paul committed
233
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
234
235
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
236
237
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
238
239
240
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
241
242
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
243
244
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
245
246
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
247
248
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
249
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
250
        {
Paul's avatar
Format  
Paul committed
251
            if(a_ins->can_eval())
Paul's avatar
Paul committed
252
253
254
255
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
256
257
        else
        {
Paul's avatar
Paul committed
258
259
260
            return;
        }

Paul's avatar
Format  
Paul committed
261
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
262
263
264
265
266
267
268
269
270
271
272
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
273
274
275
276
        auto mul             = match::name("mul")(
            match::used_once(),
            match::either_arg(0, 1)(const_broadcast.bind("d"),
                                    match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
292
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
293
294
            return;

Paul's avatar
Format  
Paul committed
295
296
297
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
298
                return;
Paul's avatar
Format  
Paul committed
299
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
300
301
302
                return;
        }

Paul's avatar
Format  
Paul committed
303
304
        auto broadcast_v = d_ins->get_operator().to_value();
        auto c_lens      = c_ins->get_shape().lens();
Paul's avatar
Paul committed
305
306
307
308
309
310
311
312
        std::vector<int64_t> permutation(c_lens.size());
        std::iota(permutation.begin(), permutation.end(), 0);
        if(c_ins == b_ins)
        {
            std::swap(permutation.back(), permutation[permutation.size() - 2]);
            c_lens = reorder_dims(c_lens, permutation);
        }
        broadcast_v["out_lens"] = c_lens;
Paul's avatar
Format  
Paul committed
313
314
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Format  
Paul committed
315
316
        auto db_transpose_ins =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", permutation}}), db_ins);
Paul's avatar
Paul committed
317
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_transpose_ins);
Paul's avatar
Paul committed
318

Paul's avatar
Format  
Paul committed
319
        if(c_ins == b_ins)
Paul's avatar
Paul committed
320
321
322
323
324
325
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
326
            a_ins = cd_ins;
Paul's avatar
Paul committed
327
328
329
330
331
332
333
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

Paul's avatar
Paul committed
334
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
335
336
337
338
339
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
340
341
342
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
343
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
344
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
345
                match::used_once()),
Paul's avatar
Paul committed
346
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
347
348
    }

349
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
350
    {
Paul's avatar
Paul committed
351
        auto ins   = r.result;
Paul's avatar
Paul committed
352
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
353
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
354
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
355
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
356

357
358
359
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
360
361
362
    }
};

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
399
struct find_add_lit_broadcast
Paul's avatar
Paul committed
400
401
402
403
404
405
406
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

407
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
408
409
410
411
412
413
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

414
415
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
416
417
418
419
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
420
{
Paul's avatar
Paul committed
421
422
    auto matcher() const
    {
Paul's avatar
Paul committed
423
        return match::name("add")(
Paul's avatar
Paul committed
424
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
425
426
    }

427
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
428
    {
Paul's avatar
Paul committed
429
430
431
432
433
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
434
435
436

        instruction_ref sumab;

Paul's avatar
Paul committed
437
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
438
439
440
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
441
            auto op     = a_ins->get_operator();
442
            auto presum = m.insert_instruction(
443
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
444
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
445
446
447
        }
        else
        {
448
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
449
450
        }

451
452
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
453
454
455
    }
};

Paul's avatar
Paul committed
456
457
struct find_inner_broadcast
{
458
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
459

460
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
461
    {
462
463
464
465
466
467
468
469
470
471
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
472
473
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
474
           }))
Paul's avatar
Paul committed
475
476
            return;

477
478
479
480
481
482
483
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
484
485
486
    }
};

487
struct find_concat_op
488
489
490
{
    auto matcher() const
    {
491
        return match::name("concat")(match::any_of[match::inputs()](
492
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
493
494
    }

495
496
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
497
    {
498
499
500
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
501
        {
502
            dim += ins->get_shape().lens().at(axis);
503
        }
504
505
506
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
507
508
    }

509
510
511
512
513
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

514
    void apply(module& m, const match::matcher_result& r) const
515
    {
516
517
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
518

519
520
521
522
523
524
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
525
526
            auto op = x->get_operator();
            if(not is_valid_op(op))
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
547
                auto concat =
548
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
549
550
                concats.push_back(concat);
            }
551
            auto y = m.insert_instruction(ins, op, concats);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
567
            m.replace_instruction(ins, args.front());
568
        else
569
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
570
571
572
    }
};

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
629
630
631
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
632
633
    }

Shucai Xiao's avatar
Shucai Xiao committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

653
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
654
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
671

672
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
673
674
675
676
677
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
678
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
679
680
                }

681
682
683
684
685
686
687
688
689
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

715
    void apply(module& m, const match::matcher_result& r) const
716
    {
Shucai Xiao's avatar
Shucai Xiao committed
717
        auto ins    = r.result;
718
719
720
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
721

722
        for(const auto& group : get_split_groups(m, splits))
723
        {
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
728
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
729
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
730
            }
731
732
733
734
735
736

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
737
            instruction_ref c = m.end();
738
739
            if(start->inputs().size() == 1)
            {
740
                c = m.insert_instruction(std::next(ins), op, ins);
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

766
                move_instructions_back(m, ins, data_args);
767
768
769
770
771
772
773

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
774
                auto concat = m.insert_instruction(
775
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
776
777
778
779
780

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
781
                c               = m.insert_instruction(std::next(ins), op, args);
782
            }
783
            if(c != m.end())
784
785
786
787
788
789
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
790
791
                    auto outputs = i->outputs();
                    for(auto output : outputs)
792
                    {
793
                        if(output->name() != "reshape")
794
                            continue;
795
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
796
                        m.replace_instruction(output, output->get_operator(), x);
797
798
                    }

799
                    m.replace_instruction(i, split->get_operator(), c);
800
801
802
803
804
805
806
807
808
809
810
811
812
813
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

814
    void apply(module& m, const match::matcher_result& r) const
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
843
844
845
846
847
848
849
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
850
851
852
853
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
854
            m.replace_instruction(concat, args.front());
855
        else
856
            m.replace_instruction(concat, concat->get_operator(), args);
857
858
859
    }
};

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

899
    void apply(module& m, const match::matcher_result& r) const
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
928
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
929
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
930
931
932
933
934
935
936
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
937
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
938
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
939
940
941
942
943
944
945
946
                }
                else
                    return;
            }
            else
                return;
        }

947
        auto concat_input =
948
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
949
        auto concat_weights =
950
951
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
952
953
954
    }
};

955
956
957
958
959
960
961
962
963
964
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
965
    return (dots >= 2 or convs >= 2);
966
967
968
969
970
971
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

972
    void apply(module& m, const match::matcher_result& r) const
973
974
975
976
977
978
979
980
981
982
983
984
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
985
            // Check that non-axes match
986
987
988
989
990
991
992
993
994
995
996
997
998
999
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1000
1001
1002
1003
1004
1005
1006
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1019
            move_instructions_back(m, input, args);
1020
            // TODO: Check if axes match
1021
            auto concat =
1022
1023
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1024
1025
1026
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1027
1028
1029
1030
1031
1032
1033
1034
1035
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1036
                int64_t len = arg->get_shape().lens()[axis];
1037
                m.replace_instruction(
1038
1039
1040
1041
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1042
1043
1044
1045
1046
1047
1048
1049
1050
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1051
1052
1053
1054
1055
1056
1057
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1058
    void apply(module& m, const match::matcher_result& r) const
1059
1060
1061
1062
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1063
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1064
1065
1066

        auto args = ins->inputs();

1067
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1068
1069
1070
    }
};

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1113
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1138
1139
1140
1141
1142
1143
1144
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1145
    void apply(module& m, const match::matcher_result& r) const
1146
1147
1148
1149
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1150
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1151
1152
1153

        auto args = ins->inputs();

1154
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1155
1156
1157
    }
};

kahmed10's avatar
kahmed10 committed
1158
1159
1160
1161
1162
1163
1164
1165
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1166
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1167
1168
1169
1170
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1171
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1172
1173
1174
    }
};

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1191
    void apply(module& m, const match::matcher_result& r) const
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1217
1218
1219
1220
1221
1222
1223
1224
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1225
        if(not same_ops(vec_rsp))
1226
1227
1228
1229
1230
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1241
1242
1243

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1244
        if(ait == rsp_strides.end())
1245
1246
1247
        {
            return;
        }
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1261
        // calculate reshape output shape
1262
        std::vector<int64_t> vec_dims(vec_rsp.size());
1263

1264
1265
1266
1267
1268
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1269

1270
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1271

1272
1273
1274
1275
1276
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1277
        auto rsp_ins = m.insert_instruction(
1278
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1279
1280

        // replace the original reshape with slice
1281
1282
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1283
        {
1284
            m.replace_instruction(
1285
1286
1287
1288
1289
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1290
            start += vec_dims[i];
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1303
    void apply(module& m, const match::matcher_result& r) const
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1323
        if(not same_ops(vec_trans))
1324
1325
1326
1327
1328
        {
            return;
        }

        // insert an transpose instruction
1329
        auto tr = m.insert_instruction(
1330
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1331
1332
1333
1334
1335

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1336
        int64_t axis_new = std::distance(perm.begin(), it);
1337
1338
1339
1340
1341
1342
1343

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1344
            m.replace_instruction(
1345
1346
1347
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1348
1349
1350
1351
        }
    }
};

1352
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1353
{
Paul's avatar
Paul committed
1354
    // Run simplifications multiple times
1355
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1356
    {
1357
        match::find_matches(m,
Paul's avatar
Paul committed
1358
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1359
1360
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1361
                            find_add_convs{},
1362
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1363
                            find_mul_conv{},
1364
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1365
1366
                            find_mul_dot{},
                            find_dot_mul{},
1367
                            find_mul_add{},
1368
1369
1370
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1371
                            find_dot_add{},
1372
1373
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1374
                            find_rsqrt{},
1375
                            find_concat_op{},
1376
                            find_split_concat{},
1377
1378
1379
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1380
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1381
    }
Paul's avatar
Paul committed
1382
}
Paul's avatar
Paul committed
1383

Paul's avatar
Paul committed
1384
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1385
} // namespace migraphx