simplify_algebra.cpp 47.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
Paul's avatar
Paul committed
55
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
56
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
57
58
}

Shucai Xiao's avatar
Shucai Xiao committed
59
60
auto reduction() { return match::name_contains("reduce"); }

61
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
62
63
64
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
65
    {
66
67
68
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
69
    }
Paul's avatar
Paul committed
70

71
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
72
    {
Paul's avatar
Paul committed
73
        auto ins      = r.result;
Paul's avatar
Paul committed
74
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
75
76
77
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
102
103
            return;

104
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
105
        auto new_a = m.insert_instruction(
106
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
107
108
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
109
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
110
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
111
    }
Paul's avatar
Paul committed
112
113
};

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

130
    void apply(module& m, const match::matcher_result& r) const
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
166
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
167

168
        auto new_a = m.insert_instruction(
169
            ins,
170
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
171
            a_ins->inputs().front());
172
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
173
174
175

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
176
            sliced_weights.push_back(m.insert_instruction(
177
178
179
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
180
181
182
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
183
            sliced_weights.push_back(m.insert_instruction(
184
185
186
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
187

188
        auto new_weights =
189
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
190

191
        auto new_conv = m.insert_instruction(
192
193
194
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

195
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
196
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
197
        m.replace_instruction(ins, slice1);
198
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
199
200
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
201
202
203
204
205
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
206
207
208
209
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
210
211
212
213
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
214
215
216
217
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
218
        auto ins     = r.result;
Paul's avatar
Paul committed
219
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
220
221
222
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
223
224
225
226

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
227
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
228
229
230
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
231
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
232
                return m.end();
Paul's avatar
Format  
Paul committed
233
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
234
235
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
236
237
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
238
239
240
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
241
242
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
243
244
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
245
246
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
247
248
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
249
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
250
        {
Paul's avatar
Format  
Paul committed
251
            if(a_ins->can_eval())
Paul's avatar
Paul committed
252
253
254
255
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
256
257
        else
        {
Paul's avatar
Paul committed
258
259
260
            return;
        }

Paul's avatar
Format  
Paul committed
261
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
262
263
264
265
266
267
268
269
270
271
272
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
273
274
        auto mul             = match::name("mul")(match::either_arg(0, 1)(
            const_broadcast.bind("d"), match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
290
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
291
292
            return;

Paul's avatar
Format  
Paul committed
293
294
295
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
296
                return;
Paul's avatar
Format  
Paul committed
297
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
298
299
300
                return;
        }

Paul's avatar
Format  
Paul committed
301
        auto broadcast_v        = d_ins->get_operator().to_value();
Paul's avatar
Paul committed
302
303
        broadcast_v["out_lens"] = c_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
304
305
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Paul committed
306
307
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_ins);

Paul's avatar
Format  
Paul committed
308
        if(c_ins == b_ins)
Paul's avatar
Paul committed
309
310
311
312
313
314
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
315
            a_ins = cd_ins;
Paul's avatar
Paul committed
316
317
318
319
320
321
322
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

Paul's avatar
Paul committed
323
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
324
325
326
327
328
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
329
330
331
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
332
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
333
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
334
                match::used_once()),
Paul's avatar
Paul committed
335
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
336
337
    }

338
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
339
    {
Paul's avatar
Paul committed
340
        auto ins   = r.result;
Paul's avatar
Paul committed
341
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
342
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
343
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
344
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
345

346
347
348
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
349
350
351
    }
};

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
388
struct find_add_lit_broadcast
Paul's avatar
Paul committed
389
390
391
392
393
394
395
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

396
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
397
398
399
400
401
402
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

403
404
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
405
406
407
408
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
409
{
Paul's avatar
Paul committed
410
411
    auto matcher() const
    {
Paul's avatar
Paul committed
412
        return match::name("add")(
Paul's avatar
Paul committed
413
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
414
415
    }

416
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
417
    {
Paul's avatar
Paul committed
418
419
420
421
422
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
423
424
425

        instruction_ref sumab;

Paul's avatar
Paul committed
426
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
427
428
429
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
430
            auto op     = a_ins->get_operator();
431
            auto presum = m.insert_instruction(
432
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
433
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
434
435
436
        }
        else
        {
437
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
438
439
        }

440
441
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
442
443
444
    }
};

Paul's avatar
Paul committed
445
446
struct find_inner_broadcast
{
447
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
448

449
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
450
    {
451
452
453
454
455
456
457
458
459
460
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
461
462
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
463
           }))
Paul's avatar
Paul committed
464
465
            return;

466
467
468
469
470
471
472
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
473
474
475
    }
};

476
struct find_concat_op
477
478
479
{
    auto matcher() const
    {
480
        return match::name("concat")(match::any_of[match::inputs()](
481
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
482
483
    }

484
485
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
486
    {
487
488
489
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
490
        {
491
            dim += ins->get_shape().lens().at(axis);
492
        }
493
494
495
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
496
497
    }

498
499
500
501
502
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

503
    void apply(module& m, const match::matcher_result& r) const
504
    {
505
506
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
507

508
509
510
511
512
513
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
514
515
            auto op = x->get_operator();
            if(not is_valid_op(op))
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
536
                auto concat =
537
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
538
539
                concats.push_back(concat);
            }
540
            auto y = m.insert_instruction(ins, op, concats);
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
556
            m.replace_instruction(ins, args.front());
557
        else
558
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
559
560
561
    }
};

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
618
619
620
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
621
622
    }

Shucai Xiao's avatar
Shucai Xiao committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

642
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
643
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
660

661
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
662
663
664
665
666
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
667
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
668
669
                }

670
671
672
673
674
675
676
677
678
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

704
    void apply(module& m, const match::matcher_result& r) const
705
    {
Shucai Xiao's avatar
Shucai Xiao committed
706
        auto ins    = r.result;
707
708
709
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
710

711
        for(const auto& group : get_split_groups(m, splits))
712
        {
Shucai Xiao's avatar
Shucai Xiao committed
713
714
715
716
717
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
718
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
719
            }
720
721
722
723
724
725

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
726
            instruction_ref c = m.end();
727
728
            if(start->inputs().size() == 1)
            {
729
                c = m.insert_instruction(std::next(ins), op, ins);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

755
                move_instructions_back(m, ins, data_args);
756
757
758
759
760
761
762

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
763
                auto concat = m.insert_instruction(
764
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
765
766
767
768
769

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
770
                c               = m.insert_instruction(std::next(ins), op, args);
771
            }
772
            if(c != m.end())
773
774
775
776
777
778
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
779
780
                    auto outputs = i->outputs();
                    for(auto output : outputs)
781
                    {
782
                        if(output->name() != "reshape")
783
                            continue;
784
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
785
                        m.replace_instruction(output, output->get_operator(), x);
786
787
                    }

788
                    m.replace_instruction(i, split->get_operator(), c);
789
790
791
792
793
794
795
796
797
798
799
800
801
802
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

803
    void apply(module& m, const match::matcher_result& r) const
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
832
833
834
835
836
837
838
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
839
840
841
842
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
843
            m.replace_instruction(concat, args.front());
844
        else
845
            m.replace_instruction(concat, concat->get_operator(), args);
846
847
848
    }
};

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

888
    void apply(module& m, const match::matcher_result& r) const
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
917
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
918
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
919
920
921
922
923
924
925
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
926
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
927
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
928
929
930
931
932
933
934
935
                }
                else
                    return;
            }
            else
                return;
        }

936
        auto concat_input =
937
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
938
        auto concat_weights =
939
940
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
941
942
943
    }
};

944
945
946
947
948
949
950
951
952
953
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
954
    return (dots >= 2 or convs >= 2);
955
956
957
958
959
960
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

961
    void apply(module& m, const match::matcher_result& r) const
962
963
964
965
966
967
968
969
970
971
972
973
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
974
            // Check that non-axes match
975
976
977
978
979
980
981
982
983
984
985
986
987
988
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
989
990
991
992
993
994
995
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1008
            move_instructions_back(m, input, args);
1009
            // TODO: Check if axes match
1010
            auto concat =
1011
1012
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1013
1014
1015
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1016
1017
1018
1019
1020
1021
1022
1023
1024
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1025
                int64_t len = arg->get_shape().lens()[axis];
1026
                m.replace_instruction(
1027
1028
1029
1030
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1031
1032
1033
1034
1035
1036
1037
1038
1039
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1040
1041
1042
1043
1044
1045
1046
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1047
    void apply(module& m, const match::matcher_result& r) const
1048
1049
1050
1051
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1052
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1053
1054
1055

        auto args = ins->inputs();

1056
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1057
1058
1059
    }
};

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1102
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1127
1128
1129
1130
1131
1132
1133
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1134
    void apply(module& m, const match::matcher_result& r) const
1135
1136
1137
1138
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1139
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1140
1141
1142

        auto args = ins->inputs();

1143
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1144
1145
1146
    }
};

kahmed10's avatar
kahmed10 committed
1147
1148
1149
1150
1151
1152
1153
1154
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1155
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1156
1157
1158
1159
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1160
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1161
1162
1163
    }
};

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1180
    void apply(module& m, const match::matcher_result& r) const
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1206
1207
1208
1209
1210
1211
1212
1213
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1214
        if(not same_ops(vec_rsp))
1215
1216
1217
1218
1219
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1230
1231
1232

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1233
        if(ait == rsp_strides.end())
1234
1235
1236
        {
            return;
        }
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1250
        // calculate reshape output shape
1251
        std::vector<int64_t> vec_dims(vec_rsp.size());
1252

1253
1254
1255
1256
1257
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1258

1259
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1260

1261
1262
1263
1264
1265
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1266
        auto rsp_ins = m.insert_instruction(
1267
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1268
1269

        // replace the original reshape with slice
1270
1271
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1272
        {
1273
            m.replace_instruction(
1274
1275
1276
1277
1278
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1279
            start += vec_dims[i];
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1292
    void apply(module& m, const match::matcher_result& r) const
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1312
        if(not same_ops(vec_trans))
1313
1314
1315
1316
1317
        {
            return;
        }

        // insert an transpose instruction
1318
        auto tr = m.insert_instruction(
1319
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1320
1321
1322
1323
1324

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1325
        int64_t axis_new = std::distance(perm.begin(), it);
1326
1327
1328
1329
1330
1331
1332

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1333
            m.replace_instruction(
1334
1335
1336
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1337
1338
1339
1340
        }
    }
};

1341
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1342
{
Paul's avatar
Paul committed
1343
    // Run simplifications multiple times
1344
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1345
    {
1346
        match::find_matches(m,
Paul's avatar
Paul committed
1347
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1348
1349
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1350
                            find_add_convs{},
1351
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1352
                            find_mul_conv{},
1353
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1354
1355
                            find_mul_dot{},
                            find_dot_mul{},
1356
                            find_mul_add{},
1357
1358
1359
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1360
                            find_dot_add{},
1361
1362
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1363
                            find_rsqrt{},
1364
                            find_concat_op{},
1365
                            find_split_concat{},
1366
1367
1368
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1369
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1370
    }
Paul's avatar
Paul committed
1371
}
Paul's avatar
Paul committed
1372

Paul's avatar
Paul committed
1373
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1374
} // namespace migraphx