simplify_algebra.cpp 36 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/concat.hpp>
5
#include <migraphx/op/slice.hpp>
6
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/op/broadcast.hpp>
8
9
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
10
11
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
12
13
14
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

15
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
16
#include <unordered_set>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraphx {
Paul's avatar
Paul committed
19
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
20

Paul's avatar
Paul committed
21
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
22
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
23
24
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
25
26
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
27
28
}

Paul's avatar
Paul committed
29
30
auto conv_const_weights()
{
Paul's avatar
Paul committed
31
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
32
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
33
34
}

Shucai Xiao's avatar
Shucai Xiao committed
35
36
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
37
38
39
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
40
    {
Paul's avatar
Paul committed
41
42
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
43
    }
Paul's avatar
Paul committed
44

45
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
46
    {
Paul's avatar
Paul committed
47
        auto ins      = r.result;
Paul's avatar
Paul committed
48
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
49
50
51
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
52
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
53
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
54
55
            return;

Paul's avatar
Paul committed
56
        auto new_a = p.insert_instruction(
57
58
59
60
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul  = p.insert_instruction(ins, make_op("mul"), new_a, w_ins);
Paul's avatar
Paul committed
61
62
        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
Paul's avatar
Paul committed
63
        p.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
64
    }
Paul's avatar
Paul committed
65
66
};

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

83
    void apply(module& p, match::matcher_result r) const
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
        auto slice_w_ins = p.insert_instruction(ins, w_slice_op, w_ins);

        auto new_a = p.insert_instruction(
122
123
124
125
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", slice_w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul = p.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
126
127
128

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
129
130
131
132
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
133
134
135
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
136
137
138
139
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
140

141
142
        auto new_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

        auto slice1 = p.insert_instruction(ins, slice_op, new_conv);
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
        p.replace_instruction(ins, slice1);
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
        for(auto output : conv_ins->outputs())
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
158
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
159
160
161
162
163
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
164
165
166
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
167
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
168
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
169
                match::used_once()),
Paul's avatar
Paul committed
170
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
171
172
    }

173
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
174
    {
Paul's avatar
Paul committed
175
        auto ins   = r.result;
Paul's avatar
Paul committed
176
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
177
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
178
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
179
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
180

181
182
183
        auto ax_ins = p.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = p.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
184
185
186
    }
};

Paul's avatar
Paul committed
187
struct find_add_lit_broadcast
Paul's avatar
Paul committed
188
189
190
191
192
193
194
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

195
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
196
197
198
199
200
201
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

202
203
        auto sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
204
205
206
207
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
208
{
Paul's avatar
Paul committed
209
210
    auto matcher() const
    {
Paul's avatar
Paul committed
211
        return match::name("add")(
Paul's avatar
Paul committed
212
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
213
214
    }

215
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
216
    {
Paul's avatar
Paul committed
217
218
219
220
221
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
222
223
224

        instruction_ref sumab;

Paul's avatar
Paul committed
225
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
226
227
228
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
229
230
231
            auto op     = a_ins->get_operator();
            auto presum = p.insert_instruction(
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
Paul's avatar
Paul committed
232
            sumab = p.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
233
234
235
        }
        else
        {
236
            sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
237
238
        }

239
240
        auto sumxy = p.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        p.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
241
242
243
    }
};

Paul's avatar
Paul committed
244
245
246
247
struct find_inner_broadcast
{
    auto matcher() const
    {
248
249
        return pointwise(
            match::nargs(2),
Paul's avatar
Paul committed
250
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
251
252
    }

253
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
254
255
256
257
258
259
260
261
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
262
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
263
264
            return;

Paul's avatar
Paul committed
265
266
        auto op = p.insert_instruction(
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
Paul's avatar
Paul committed
267
268
269
270
        p.replace_instruction(ins, xbroadcast, op);
    }
};

271
struct find_concat_op
272
273
274
{
    auto matcher() const
    {
275
        return match::name("concat")(match::any_of[match::inputs()](
276
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
277
278
    }

279
280
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
281
    {
282
283
284
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
285
        {
286
            dim += ins->get_shape().lens().at(axis);
287
        }
288
289
290
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
291
292
    }

293
294
295
296
297
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

298
    void apply(module& p, const match::matcher_result& r) const
299
    {
300
301
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
302

303
304
305
306
307
308
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
309
310
            auto op = x->get_operator();
            if(not is_valid_op(op))
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
331
332
                auto concat =
                    p.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                concats.push_back(concat);
            }
            auto y = p.insert_instruction(ins, op, concats);
            return {y};

        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
            p.replace_instruction(ins, args.front());
        else
354
            p.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
355
356
357
    }
};

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
396
397
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
398
399
    }

Shucai Xiao's avatar
Shucai Xiao committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

419
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
420
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
437

438
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
439
440
441
442
443
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
444
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
445
446
                }

447
448
449
450
451
452
453
454
455
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

481
    void apply(module& p, const match::matcher_result& r) const
482
    {
Shucai Xiao's avatar
Shucai Xiao committed
483
        auto ins    = r.result;
484
485
486
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
487

Shucai Xiao's avatar
Shucai Xiao committed
488
        for(const auto& group : get_split_groups(p, splits))
489
        {
Shucai Xiao's avatar
Shucai Xiao committed
490
491
492
493
494
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
495
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
496
            }
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
            instruction_ref c = p.end();
            if(start->inputs().size() == 1)
            {
                c = p.insert_instruction(std::next(ins), op, ins);
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
                    p.move_instructions(data, ins);

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
541
542
                auto concat = p.insert_instruction(
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
                c               = p.insert_instruction(std::next(ins), op, args);
            }
            if(c != p.end())
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
                    for(auto output : i->outputs())
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
561
562
                        auto x =
                            p.insert_instruction(output, make_op("contiguous"), output->inputs());
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
                        p.replace_instruction(output, output->get_operator(), x);
                    }

                    p.replace_instruction(i, split->get_operator(), c);
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

581
    void apply(module& p, const match::matcher_result& r) const
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
610
611
612
613
614
615
616
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
617
618
619
620
621
622
623
624
625
626
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
            p.replace_instruction(concat, args.front());
        else
            p.replace_instruction(concat, concat->get_operator(), args);
    }
};

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

666
    void apply(module& p, match::matcher_result r) const
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
                    b_input = p.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
696
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
697
698
699
700
701
702
703
704
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
                    a_input = p.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
705
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
706
707
708
709
710
711
712
713
                }
                else
                    return;
            }
            else
                return;
        }

714
715
716
717
        auto concat_input =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
        auto concat_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
718
719
720
721
        p.replace_instruction(ins, new_op, concat_input, concat_weights);
    }
};

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

739
    void apply(module& p, const match::matcher_result& r) const
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
767
768
769
770
771
772
773
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
                p.move_instructions(arg, input);
            // TODO: Check if axises match
789
790
            auto concat =
                p.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
791
            auto fused     = p.insert_instruction(std::next(input), op, input, concat);
792
793
794
795
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
796
797
798
799
800
                p.replace_instruction(
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
801
802
803
804
805
806
807
808
809
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

810
811
812
813
814
815
816
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

817
    void apply(module& p, match::matcher_result r) const
818
819
820
821
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

822
        auto recip = p.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
823
824
825

        auto args = ins->inputs();

826
        p.replace_instruction(ins, make_op("mul"), args.front(), recip);
827
828
829
830
831
832
833
834
835
836
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

837
    void apply(module& p, match::matcher_result r) const
838
839
840
841
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

842
        auto neg = p.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
843
844
845

        auto args = ins->inputs();

846
        p.replace_instruction(ins, make_op("add"), args.front(), neg);
847
848
849
    }
};

kahmed10's avatar
kahmed10 committed
850
851
852
853
854
855
856
857
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

858
    void apply(module& p, match::matcher_result r) const
kahmed10's avatar
kahmed10 committed
859
860
861
862
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

863
        p.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
864
865
866
    }
};

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

883
    void apply(module& p, match::matcher_result r) const
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
911
912
913
914
915
916
917
918
919
920
921
922
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
923
924
925
        {
            return;
        }
926
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
927
928

        // calculate reshape output shape
929
930
931
932
933
934
935
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
936
937

        // insert the reshape instruction
938
939
        auto rsp_ins = p.insert_instruction(
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
940
941

        // replace the original reshape with slice
942
943
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
944
945
        {
            p.replace_instruction(
946
947
948
949
950
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
951
            start += vec_dims[i];
952
953
954
955
956
957
958
959
960
961
962
963
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

964
    void apply(module& p, match::matcher_result r) const
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
990
991
        auto tr =
            p.insert_instruction(std::next(input), make_op("transpose", {{"dims", perm}}), input);
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
        auto axis_new = static_cast<int64_t>(std::distance(perm.begin(), it));

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1005
1006
1007
1008
            p.replace_instruction(
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1009
1010
1011
1012
        }
    }
};

1013
void simplify_algebra::apply(module& p) const
Paul's avatar
Paul committed
1014
{
Paul's avatar
Paul committed
1015
    // Run simplifications multiple times
1016
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1017
    {
Paul's avatar
Paul committed
1018
        match::find_matches(p,
Paul's avatar
Paul committed
1019
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1020
1021
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1022
                            find_add_convs{},
1023
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1024
                            find_mul_conv{},
1025
                            find_mul_slice_conv{},
1026
                            find_mul_add{},
1027
1028
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1029
                            find_rsqrt{},
1030
                            find_concat_op{},
1031
                            find_split_concat{},
1032
1033
1034
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
Paul's avatar
Paul committed
1035
1036
        dead_code_elimination{}.apply(p);
    }
Paul's avatar
Paul committed
1037
}
Paul's avatar
Paul committed
1038

Paul's avatar
Paul committed
1039
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1040
} // namespace migraphx