simplify_algebra.cpp 47.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
Paul's avatar
Paul committed
55
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
56
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
57
58
}

Shucai Xiao's avatar
Shucai Xiao committed
59
60
auto reduction() { return match::name_contains("reduce"); }

61
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
62
63
64
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
65
    {
66
67
68
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
69
    }
Paul's avatar
Paul committed
70

71
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
72
    {
Paul's avatar
Paul committed
73
        auto ins      = r.result;
Paul's avatar
Paul committed
74
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
75
76
77
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
102
103
            return;

104
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
105
        auto new_a = m.insert_instruction(
106
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
107
108
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
109
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
110
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
111
    }
Paul's avatar
Paul committed
112
113
};

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

130
    void apply(module& m, const match::matcher_result& r) const
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
166
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
167

168
        auto new_a = m.insert_instruction(
169
            ins,
170
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
171
            a_ins->inputs().front());
172
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
173
174
175

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
176
            sliced_weights.push_back(m.insert_instruction(
177
178
179
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
180
181
182
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
183
            sliced_weights.push_back(m.insert_instruction(
184
185
186
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
187

188
        auto new_weights =
189
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
190

191
        auto new_conv = m.insert_instruction(
192
193
194
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

195
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
196
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
197
        m.replace_instruction(ins, slice1);
198
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
199
200
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
201
202
203
204
205
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
struct find_mul_dot
{
    auto matcher() const
    {
        auto is_dot_const_inputs = match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(
            match::either_arg(0, 1)(is_dot_const_inputs.bind("dot"),
                                    match::name("broadcast", "multibroadcast").bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto dot_ins = r.instructions["dot"];
        auto a_ins = dot_ins->inputs()[0];
        auto b_ins = dot_ins->inputs()[1];
        auto c_ins    = r.instructions["c"];

        std::cout << "find_mul_dot" << std::endl;
        m.debug_print(ins->inputs());
        m.debug_print(ins);

        const auto& c_lens    = c_ins->get_shape().lens();
        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
        if (std::count_if(c_strides.begin(), c_strides.end(), [](auto s) {
            return s != 0;
        }) > 1)
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
            if (not x_ins->can_eval())
                return m.end();
            auto broadcast_v = c_ins->get_operator().to_value();
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

            auto cb_ins = m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

        if (c_strides.back() == 1) {
            b_ins = add_mul_const(b_ins);
        }
        else if (c_strides[c_strides.size() - 2] == 1) {
            a_ins = add_mul_const(a_ins);
        }
        else if (c_ins->get_shape().scalar())
        {
            if (a_ins->can_eval())
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);

        }
        else {
            return;
        }

        if (contains({a_ins, b_ins}, m.end()))
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
        auto mul = match::name("mul")(match::either_arg(0, 1)(const_broadcast.bind("d"), match::none_of(match::is_constant()).bind("z")));
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
        if (std::count_if(d_strides.begin(), d_strides.end(), [](auto s) {
            return s != 0;
        }) > 1)
            return;

        if (not d_ins->get_shape().scalar()) {
            if (d_strides.back() == 1 and not b_ins->can_eval()) 
                return;
            if (d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval()) 
                return;
        }

        auto broadcast_v = d_ins->get_operator().to_value();
        broadcast_v["out_lens"] = c_ins->get_shape().lens();

        auto db_ins = m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_ins);

        if (c_ins == b_ins)
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
            a_ins = cd_ins;   
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

Paul's avatar
Paul committed
326
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
327
328
329
330
331
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
332
333
334
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
335
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
336
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
337
                match::used_once()),
Paul's avatar
Paul committed
338
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
339
340
    }

341
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
342
    {
Paul's avatar
Paul committed
343
        auto ins   = r.result;
Paul's avatar
Paul committed
344
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
345
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
346
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
347
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
348

349
350
351
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
352
353
354
    }
};

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
391
struct find_add_lit_broadcast
Paul's avatar
Paul committed
392
393
394
395
396
397
398
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

399
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
400
401
402
403
404
405
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

406
407
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
408
409
410
411
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
412
{
Paul's avatar
Paul committed
413
414
    auto matcher() const
    {
Paul's avatar
Paul committed
415
        return match::name("add")(
Paul's avatar
Paul committed
416
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
417
418
    }

419
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
420
    {
Paul's avatar
Paul committed
421
422
423
424
425
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
426
427
428

        instruction_ref sumab;

Paul's avatar
Paul committed
429
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
430
431
432
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
433
            auto op     = a_ins->get_operator();
434
            auto presum = m.insert_instruction(
435
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
436
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
437
438
439
        }
        else
        {
440
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
441
442
        }

443
444
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
445
446
447
    }
};

Paul's avatar
Paul committed
448
449
struct find_inner_broadcast
{
450
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
451

452
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
453
    {
454
455
456
457
458
459
460
461
462
463
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
464
465
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
466
           }))
Paul's avatar
Paul committed
467
468
            return;

469
470
471
472
473
474
475
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
476
477
478
    }
};

479
struct find_concat_op
480
481
482
{
    auto matcher() const
    {
483
        return match::name("concat")(match::any_of[match::inputs()](
484
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
485
486
    }

487
488
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
489
    {
490
491
492
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
493
        {
494
            dim += ins->get_shape().lens().at(axis);
495
        }
496
497
498
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
499
500
    }

501
502
503
504
505
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

506
    void apply(module& m, const match::matcher_result& r) const
507
    {
508
509
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
510

511
512
513
514
515
516
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
517
518
            auto op = x->get_operator();
            if(not is_valid_op(op))
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
539
                auto concat =
540
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
541
542
                concats.push_back(concat);
            }
543
            auto y = m.insert_instruction(ins, op, concats);
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
559
            m.replace_instruction(ins, args.front());
560
        else
561
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
562
563
564
    }
};

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
621
622
623
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
624
625
    }

Shucai Xiao's avatar
Shucai Xiao committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

645
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
646
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
663

664
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
665
666
667
668
669
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
670
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
671
672
                }

673
674
675
676
677
678
679
680
681
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

707
    void apply(module& m, const match::matcher_result& r) const
708
    {
Shucai Xiao's avatar
Shucai Xiao committed
709
        auto ins    = r.result;
710
711
712
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
713

714
        for(const auto& group : get_split_groups(m, splits))
715
        {
Shucai Xiao's avatar
Shucai Xiao committed
716
717
718
719
720
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
721
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
722
            }
723
724
725
726
727
728

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
729
            instruction_ref c = m.end();
730
731
            if(start->inputs().size() == 1)
            {
732
                c = m.insert_instruction(std::next(ins), op, ins);
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

758
                move_instructions_back(m, ins, data_args);
759
760
761
762
763
764
765

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
766
                auto concat = m.insert_instruction(
767
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
768
769
770
771
772

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
773
                c               = m.insert_instruction(std::next(ins), op, args);
774
            }
775
            if(c != m.end())
776
777
778
779
780
781
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
782
783
                    auto outputs = i->outputs();
                    for(auto output : outputs)
784
                    {
785
                        if(output->name() != "reshape")
786
                            continue;
787
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
788
                        m.replace_instruction(output, output->get_operator(), x);
789
790
                    }

791
                    m.replace_instruction(i, split->get_operator(), c);
792
793
794
795
796
797
798
799
800
801
802
803
804
805
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

806
    void apply(module& m, const match::matcher_result& r) const
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
835
836
837
838
839
840
841
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
842
843
844
845
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
846
            m.replace_instruction(concat, args.front());
847
        else
848
            m.replace_instruction(concat, concat->get_operator(), args);
849
850
851
    }
};

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

891
    void apply(module& m, const match::matcher_result& r) const
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
920
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
921
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
922
923
924
925
926
927
928
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
929
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
930
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
931
932
933
934
935
936
937
938
                }
                else
                    return;
            }
            else
                return;
        }

939
        auto concat_input =
940
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
941
        auto concat_weights =
942
943
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
944
945
946
    }
};

947
948
949
950
951
952
953
954
955
956
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
957
    return (dots >= 2 or convs >= 2);
958
959
960
961
962
963
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

964
    void apply(module& m, const match::matcher_result& r) const
965
966
967
968
969
970
971
972
973
974
975
976
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
977
            // Check that non-axes match
978
979
980
981
982
983
984
985
986
987
988
989
990
991
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
992
993
994
995
996
997
998
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1011
            move_instructions_back(m, input, args);
1012
            // TODO: Check if axes match
1013
            auto concat =
1014
1015
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1016
1017
1018
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1019
1020
1021
1022
1023
1024
1025
1026
1027
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1028
                int64_t len = arg->get_shape().lens()[axis];
1029
                m.replace_instruction(
1030
1031
1032
1033
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1034
1035
1036
1037
1038
1039
1040
1041
1042
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1043
1044
1045
1046
1047
1048
1049
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1050
    void apply(module& m, const match::matcher_result& r) const
1051
1052
1053
1054
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1055
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1056
1057
1058

        auto args = ins->inputs();

1059
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1060
1061
1062
    }
};

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1105
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1130
1131
1132
1133
1134
1135
1136
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1137
    void apply(module& m, const match::matcher_result& r) const
1138
1139
1140
1141
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1142
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1143
1144
1145

        auto args = ins->inputs();

1146
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1147
1148
1149
    }
};

kahmed10's avatar
kahmed10 committed
1150
1151
1152
1153
1154
1155
1156
1157
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1158
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1159
1160
1161
1162
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1163
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1164
1165
1166
    }
};

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1183
    void apply(module& m, const match::matcher_result& r) const
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1209
1210
1211
1212
1213
1214
1215
1216
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1217
        if(not same_ops(vec_rsp))
1218
1219
1220
1221
1222
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1233
1234
1235

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1236
        if(ait == rsp_strides.end())
1237
1238
1239
        {
            return;
        }
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1253
        // calculate reshape output shape
1254
        std::vector<int64_t> vec_dims(vec_rsp.size());
1255

1256
1257
1258
1259
1260
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1261

1262
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1263

1264
1265
1266
1267
1268
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1269
        auto rsp_ins = m.insert_instruction(
1270
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1271
1272

        // replace the original reshape with slice
1273
1274
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1275
        {
1276
            m.replace_instruction(
1277
1278
1279
1280
1281
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1282
            start += vec_dims[i];
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1295
    void apply(module& m, const match::matcher_result& r) const
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1315
        if(not same_ops(vec_trans))
1316
1317
1318
1319
1320
        {
            return;
        }

        // insert an transpose instruction
1321
        auto tr = m.insert_instruction(
1322
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1323
1324
1325
1326
1327

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1328
        int64_t axis_new = std::distance(perm.begin(), it);
1329
1330
1331
1332
1333
1334
1335

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1336
            m.replace_instruction(
1337
1338
1339
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1340
1341
1342
1343
        }
    }
};

1344
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1345
{
Paul's avatar
Paul committed
1346
    // Run simplifications multiple times
1347
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1348
    {
1349
        match::find_matches(m,
Paul's avatar
Paul committed
1350
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1351
1352
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1353
                            find_add_convs{},
1354
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1355
                            find_mul_conv{},
1356
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1357
1358
                            find_mul_dot{},
                            find_dot_mul{},
1359
                            find_mul_add{},
1360
1361
1362
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1363
                            find_dot_add{},
1364
1365
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1366
                            find_rsqrt{},
1367
                            find_concat_op{},
1368
                            find_split_concat{},
1369
1370
1371
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1372
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1373
    }
Paul's avatar
Paul committed
1374
}
Paul's avatar
Paul committed
1375

Paul's avatar
Paul committed
1376
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1377
} // namespace migraphx