gen_onnx.py 165 KB
Newer Older
1
2
3
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
# command: python -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
6
import numpy as np
import onnx
from onnx import helper
7
from onnx import TensorProto
Khalique's avatar
Khalique committed
8

Khalique's avatar
Khalique committed
9

Khalique's avatar
Khalique committed
10
11
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
12
13
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
14
15
16
17
18
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
19
        else:
Khalique's avatar
Khalique committed
20
21
22
23
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
24
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
25

Khalique's avatar
Khalique committed
26
27
    return run_test

Khalique's avatar
Khalique committed
28

Khalique's avatar
Khalique committed
29
@onnx_test
Khalique's avatar
Khalique committed
30
31
32
33
34
35
36
37
38
39
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
40
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
41

Khalique's avatar
Khalique committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
57
@onnx_test
Khalique's avatar
Khalique committed
58
59
60
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
61
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
62

Khalique's avatar
Khalique committed
63
64
65
66
67
68
69
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
70
71


Khalique's avatar
Khalique committed
72
@onnx_test
Khalique's avatar
Khalique committed
73
74
75
76
77
78
79
80
81
82
83
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
84
    return (
Khalique's avatar
Khalique committed
85
        [node],
Khalique's avatar
Khalique committed
86
        [x, y],
Khalique's avatar
Khalique committed
87
88
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
89
90
91
92
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
93
94


Khalique's avatar
Khalique committed
95
@onnx_test
Khalique's avatar
Khalique committed
96
def add_scalar_test():
97
98
99
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
100

Khalique's avatar
Khalique committed
101
102
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

103
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
104
105


Khalique's avatar
Khalique committed
106
@onnx_test
Khalique's avatar
Khalique committed
107
108
109
110
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
111
112
113
114
115
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
116

Khalique's avatar
Khalique committed
117
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119

Khalique's avatar
Khalique committed
120
@onnx_test
Khalique's avatar
Khalique committed
121
122
123
124
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
125
126
127
128
129
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
130

Khalique's avatar
Khalique committed
131
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133

Khalique's avatar
Khalique committed
134
@onnx_test
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
143
144
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
145
146
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
162
@onnx_test
Khalique's avatar
Khalique committed
163
164
165
166
167
168
169
170
171
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
172

Khalique's avatar
Khalique committed
173
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
174

Khalique's avatar
Khalique committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
@onnx_test
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


@onnx_test
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
@onnx_test
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


250
251
252
253
254
255
256
257
258
259
260
261
262
263
@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@onnx_test
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


279
280
281
282
283
284
285
286
287
288
289
290
291
292
@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
@onnx_test
def batchnorm_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 3, 5])

    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)

    return ([node], [x, scale, bias, mean, var], [out])


@onnx_test
def batchnorm_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT,
                                        [1, 3, 5, 5, 5])

    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)

    return ([node], [x, scale, bias, mean, var], [out])


Khalique's avatar
Khalique committed
330
@onnx_test
Khalique's avatar
Khalique committed
331
332
333
334
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
335
336
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
337
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
338

kahmed10's avatar
kahmed10 committed
339

Shucai Xiao's avatar
Shucai Xiao committed
340
341
342
343
344
345
346
347
348
349
350
351
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
352

kahmed10's avatar
kahmed10 committed
353

Khalique's avatar
Khalique committed
354
@onnx_test
Khalique's avatar
Khalique committed
355
356
357
358
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
359
360
361
362
363
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
364

Khalique's avatar
Khalique committed
365
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
366

Khalique's avatar
Khalique committed
367

kahmed10's avatar
kahmed10 committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


Shucai Xiao's avatar
Shucai Xiao committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@onnx_test
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


kahmed10's avatar
kahmed10 committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
419
420
421
422
423
424
425
426
427
428
@onnx_test
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
429
@onnx_test
Khalique's avatar
Khalique committed
430
431
432
433
434
435
436
437
438
439
440
441
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
442
443
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
444

Khalique's avatar
Khalique committed
445
@onnx_test
Khalique's avatar
Khalique committed
446
447
448
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
449

Khalique's avatar
Khalique committed
450
451
452
453
454
455
456
457
458
459
460
461
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
462
    return ([node], [], [y])
Khalique's avatar
Khalique committed
463

Khalique's avatar
Khalique committed
464

Khalique's avatar
Khalique committed
465
@onnx_test
Khalique's avatar
Khalique committed
466
def constant_fill_test():
Khalique's avatar
Khalique committed
467
468
469
470
471
472
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
473
474
475
476
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
477
478
    )

Khalique's avatar
Khalique committed
479
    return ([node], [], [value])
Khalique's avatar
Khalique committed
480

Khalique's avatar
Khalique committed
481

Khalique's avatar
Khalique committed
482
@onnx_test
Khalique's avatar
Khalique committed
483
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
484
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
485
486
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
487
488
489
490
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
491
492
493
494
495
496
497
498
499
500
501
502

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
503
504
505
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
506
507
    )

Khalique's avatar
Khalique committed
508
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
509

Khalique's avatar
Khalique committed
510

Khalique's avatar
Khalique committed
511
@onnx_test
Khalique's avatar
Khalique committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
528
    return ([node], [], [y])
Khalique's avatar
Khalique committed
529

Khalique's avatar
Khalique committed
530

Khalique's avatar
Khalique committed
531
@onnx_test
Khalique's avatar
Khalique committed
532
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
533
534
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
535
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
536
537
538
539
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
540
541
542
543
544
545
546
547
548
549
550
551
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
552
        value=tensor_val,
Khalique's avatar
Khalique committed
553
554
    )

Khalique's avatar
Khalique committed
555
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
556

Khalique's avatar
Khalique committed
557

Khalique's avatar
Khalique committed
558
@onnx_test
Khalique's avatar
Khalique committed
559
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
560
561
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
562
563

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
564
565
566
567
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
568
569
570
571
572
573
574
575
576

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
577
578
579
580
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
581

Khalique's avatar
Khalique committed
582
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
583

Khalique's avatar
Khalique committed
584

Khalique's avatar
Khalique committed
585
@onnx_test
Khalique's avatar
Khalique committed
586
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
587
588
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
589
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
590
591
592
593
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
594
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
595
596
597
598
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
599
600
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
601
602
603
604
605

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
606

Khalique's avatar
Khalique committed
607
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
608

Khalique's avatar
Khalique committed
609

Khalique's avatar
Khalique committed
610
@onnx_test
Khalique's avatar
Khalique committed
611
612
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
613
614
615
616
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
617
618
619
620
621
622
623
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
624

Khalique's avatar
Khalique committed
625
626
627
628
629
630
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
631
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
632

Khalique's avatar
Khalique committed
633

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
@onnx_test
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
671
@onnx_test
Khalique's avatar
Khalique committed
672
673
674
675
676
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
677
678
679
680
681
682
683
684
685
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
686
687


688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
704
@onnx_test
Khalique's avatar
Khalique committed
705
706
707
708
709
710
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
711
712
713
714
715
716
717
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
718
719


Khalique's avatar
Khalique committed
720
@onnx_test
Khalique's avatar
Khalique committed
721
722
723
724
725
726
727
728
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
729
730
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
731

Khalique's avatar
Khalique committed
732
733
734
735
736
737
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
738

Khalique's avatar
Khalique committed
739
740
741
742
743
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
744

Khalique's avatar
Khalique committed
745
746
747
748
749
750
751
752
753
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
754
755


Khalique's avatar
Khalique committed
756
@onnx_test
Khalique's avatar
Khalique committed
757
758
759
760
761
762
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
763
764
765
766
767
768
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
769

Khalique's avatar
Khalique committed
770
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
771

Khalique's avatar
Khalique committed
772
773
774
775
776
777
778
779
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
780
781


Khalique's avatar
Khalique committed
782
@onnx_test
Khalique's avatar
Khalique committed
783
784
785
786
787
788
789
790
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
791
792
793
794
795
796
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
797

Khalique's avatar
Khalique committed
798
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
799

Khalique's avatar
Khalique committed
800
801
802
803
804
805
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
806

Khalique's avatar
Khalique committed
807
808
809
810
811
812
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
813

Khalique's avatar
Khalique committed
814
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
815

Khalique's avatar
Khalique committed
816
817
818
819
820
821
822
823
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
824
825


826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
842
@onnx_test
Khalique's avatar
Khalique committed
843
844
845
846
847
848
849
850
851
852
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
853
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
854

Khalique's avatar
Khalique committed
855

Khalique's avatar
Khalique committed
856
@onnx_test
Khalique's avatar
Khalique committed
857
858
859
860
861
862
863
864
865
866
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
867
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
868

Khalique's avatar
Khalique committed
869

kahmed10's avatar
kahmed10 committed
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
947
948
949
950
951
952
953
954
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
955
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
956
957
958
959
960

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
977
978
979
980
981
982
983
984
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
@onnx_test
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


@onnx_test
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


@onnx_test
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')

    return ([node], [x], [y])


Umang Yadav's avatar
Umang Yadav committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
@onnx_test
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


@onnx_test
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


@onnx_test
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)

    return ([node], [x], [y])


@onnx_test
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1120
1121
@onnx_test
def dequantizelinear_test():
turneram's avatar
turneram committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def dequantizelinear_zero_point_test():
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


@onnx_test
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


Khalique's avatar
Khalique committed
1176
@onnx_test
Khalique's avatar
Khalique committed
1177
def dropout_test():
Khalique's avatar
Khalique committed
1178
1179
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1180

Khalique's avatar
Khalique committed
1181
1182
1183
1184
1185
1186
1187
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1188
1189


Khalique's avatar
Khalique committed
1190
@onnx_test
Khalique's avatar
Khalique committed
1191
1192
1193
1194
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1195
1196
1197
1198
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1199

Khalique's avatar
Khalique committed
1200
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1201

Khalique's avatar
Khalique committed
1202

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
@onnx_test
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


@onnx_test
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
@onnx_test
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Khalique's avatar
Khalique committed
1333
@onnx_test
Khalique's avatar
Khalique committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1344
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1345

Khalique's avatar
Khalique committed
1346

Khalique's avatar
Khalique committed
1347
@onnx_test
Khalique's avatar
Khalique committed
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1358
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1359

Khalique's avatar
Khalique committed
1360

Khalique's avatar
Khalique committed
1361
@onnx_test
Khalique's avatar
Khalique committed
1362
1363
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
1364
1365
1366
1367
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1377
1378
1379
1380
1381
1382
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1383

Khalique's avatar
Khalique committed
1384
@onnx_test
Khalique's avatar
Khalique committed
1385
1386
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1387
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1388
1389
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
1390
1391
1392
1393
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1394

Khalique's avatar
Khalique committed
1395
1396
1397
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1398

kahmed10's avatar
kahmed10 committed
1399

Khalique's avatar
Khalique committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
@onnx_test
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


Shucai Xiao's avatar
Shucai Xiao committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1435

kahmed10's avatar
kahmed10 committed
1436

Khalique's avatar
Khalique committed
1437
@onnx_test
Khalique's avatar
Khalique committed
1438
1439
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
1440
1441
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1442
1443
1444
1445
1446
1447
1448
1449
1450
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1451
1452
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
1453

Shucai Xiao's avatar
Shucai Xiao committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
@onnx_test
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


@onnx_test
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


Khalique's avatar
Khalique committed
1486
@onnx_test
Khalique's avatar
Khalique committed
1487
1488
1489
1490
1491
1492
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
1493
1494
1495
1496
1497
1498
1499
1500
1501
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
1502
1503


Khalique's avatar
Khalique committed
1504
@onnx_test
Khalique's avatar
Khalique committed
1505
def gemm_ex_test():
Shucai Xiao's avatar
Shucai Xiao committed
1506
1507
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 8, 7])
Khalique's avatar
Khalique committed
1508
1509
1510
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
1511
1512
1513
1514
1515
1516
1517
1518
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1519
1520


Khalique's avatar
Khalique committed
1521
@onnx_test
Khalique's avatar
Khalique committed
1522
1523
1524
1525
1526
1527
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
1528
1529
1530
1531
1532
1533
1534
1535
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1536
1537


Shucai Xiao's avatar
Shucai Xiao committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
@onnx_test
def gemm_half_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 1, 8, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 1, 6, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])


Khalique's avatar
Khalique committed
1555
@onnx_test
Khalique's avatar
Khalique committed
1556
def globalavgpool_test():
Khalique's avatar
Khalique committed
1557
1558
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1559
1560
1561
1562
1563
1564
1565

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1566
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1567

Khalique's avatar
Khalique committed
1568

Khalique's avatar
Khalique committed
1569
@onnx_test
Khalique's avatar
Khalique committed
1570
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1571
1572
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1573
1574
1575
1576
1577
1578
1579

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1580
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1581

Khalique's avatar
Khalique committed
1582

Khalique's avatar
Khalique committed
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
@onnx_test
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Khalique's avatar
Khalique committed
1621
@onnx_test
Khalique's avatar
Khalique committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1634
1635
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1636

Shucai Xiao's avatar
Shucai Xiao committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
@onnx_test
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1691
1692
1693
1694
1695
1696
1697
1698
1699
@onnx_test
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1700
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
1714
1715
1716
1717
1718
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
1719

Shucai Xiao's avatar
Shucai Xiao committed
1720
1721
1722
1723
1724
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


@onnx_test
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


@onnx_test
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
@onnx_test
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
@onnx_test
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])

    one = np.ones([1]).astype(np.float)
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))

    two = np.array([2]).astype(np.float)
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))

    three = np.array([3]).astype(np.float)
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])


Khalique's avatar
Khalique committed
2071
@onnx_test
Khalique's avatar
Khalique committed
2072
def imagescaler_test():
Khalique's avatar
Khalique committed
2073
2074
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
2075

Khalique's avatar
Khalique committed
2076
2077
2078
2079
2080
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
2081

Khalique's avatar
Khalique committed
2082
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2083

Khalique's avatar
Khalique committed
2084

Shucai Xiao's avatar
Shucai Xiao committed
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2099
@onnx_test
Khalique's avatar
Khalique committed
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2111
2112
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2113

Khalique's avatar
Khalique committed
2114
@onnx_test
Khalique's avatar
Khalique committed
2115
2116
2117
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
2118
2119
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2120
2121
2122
2123
2124
2125
2126

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2127
2128
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2129

Khalique's avatar
Khalique committed
2130
@onnx_test
Khalique's avatar
Khalique committed
2131
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
2132
2133
2134
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
2135
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2136
2137
2138
2139
2140
2141
2142

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2143
2144
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2145

2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


@onnx_test
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2235
2236
2237
2238
2239
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


kahmed10's avatar
kahmed10 committed
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
@onnx_test
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


Khalique's avatar
Khalique committed
2303
@onnx_test
Khalique's avatar
Khalique committed
2304
2305
2306
2307
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
2308
2309
2310
2311
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
2312

Khalique's avatar
Khalique committed
2313
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2314

Khalique's avatar
Khalique committed
2315

Khalique's avatar
Khalique committed
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
@onnx_test
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


@onnx_test
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
2370
@onnx_test
Khalique's avatar
Khalique committed
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2381
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2382

Khalique's avatar
Khalique committed
2383

Shucai Xiao's avatar
Shucai Xiao committed
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
@onnx_test
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


Khalique's avatar
Khalique committed
2417
@onnx_test
Khalique's avatar
Khalique committed
2418
2419
2420
2421
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
2422
2423
2424
2425
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
2426

Khalique's avatar
Khalique committed
2427
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2428

Khalique's avatar
Khalique committed
2429

2430
2431
2432
@onnx_test
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
2433
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
2434
2435
2436
2437
2438
2439
2440
2441

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
2442
2443
2444
2445
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
2446

2447
    return ([node0, node1], [x], [y])
2448
2449


Shucai Xiao's avatar
Shucai Xiao committed
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
@onnx_test
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


@onnx_test
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


Khalique's avatar
Khalique committed
2528
@onnx_test
Khalique's avatar
Khalique committed
2529
2530
2531
2532
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
2533
2534
2535
2536
2537
2538
2539
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2540

Khalique's avatar
Khalique committed
2541
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2542

Khalique's avatar
Khalique committed
2543

Khalique's avatar
Khalique committed
2544
@onnx_test
Khalique's avatar
Khalique committed
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2556
2557
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2558

Khalique's avatar
Khalique committed
2559
@onnx_test
Khalique's avatar
Khalique committed
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2571
2572
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2573

Khalique's avatar
Khalique committed
2574
@onnx_test
Khalique's avatar
Khalique committed
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2586
2587
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2588

Khalique's avatar
Khalique committed
2589
@onnx_test
Khalique's avatar
Khalique committed
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2601
2602
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2603

Khalique's avatar
Khalique committed
2604
@onnx_test
Khalique's avatar
Khalique committed
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2616
2617
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2618

Khalique's avatar
Khalique committed
2619
@onnx_test
Khalique's avatar
Khalique committed
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2631
2632
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2633

2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
2649
@onnx_test
Khalique's avatar
Khalique committed
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2662
2663
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2664

2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2695
@onnx_test
Khalique's avatar
Khalique committed
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2708
2709
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2710

turneram's avatar
turneram committed
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
@onnx_test
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


@onnx_test
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])

    return ([node], [input], [output])


@onnx_test
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


Shucai Xiao's avatar
Shucai Xiao committed
2764
2765
@onnx_test
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
2766
2767
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2768
2769
2770
2771
2772
2773

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
@onnx_test
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [6, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)

    return ([node], [b, s, mo, iou, st], [out])


2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
@onnx_test
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2819
@onnx_test
Khalique's avatar
Khalique committed
2820
2821
2822
2823
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
2824
2825
2826
2827
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2828

Khalique's avatar
Khalique committed
2829
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2830

Khalique's avatar
Khalique committed
2831

Shucai Xiao's avatar
Shucai Xiao committed
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
@onnx_test
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
@onnx_test
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


@onnx_test
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


kahmed10's avatar
kahmed10 committed
2876
2877
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
2878
2879
2880
2881
2882
2883
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
2895
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
2896
2897


Khalique's avatar
Khalique committed
2898
@onnx_test
Khalique's avatar
Khalique committed
2899
2900
2901
2902
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
2903
2904
2905
2906
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2907

Khalique's avatar
Khalique committed
2908
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2909

Khalique's avatar
Khalique committed
2910

2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
@onnx_test
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


kahmed10's avatar
kahmed10 committed
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
@onnx_test
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
2989
@onnx_test
Khalique's avatar
Khalique committed
2990
2991
2992
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2993
2994
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2995
2996
2997
2998
2999
3000
3001

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3002
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
3003

kahmed10's avatar
kahmed10 committed
3004

Shucai Xiao's avatar
Shucai Xiao committed
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
@onnx_test
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


turneram's avatar
turneram committed
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
@onnx_test
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


3070
3071
@onnx_test
def quantizelinear_test():
turneram's avatar
turneram committed
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_zero_point_test():
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


@onnx_test
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
@onnx_test
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


@onnx_test
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


@onnx_test
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


@onnx_test
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)

    return ([node], [input], [output])


@onnx_test
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


@onnx_test
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


@onnx_test
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


@onnx_test
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


@onnx_test
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)

    return ([node], [input], [output])


@onnx_test
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


kahmed10's avatar
kahmed10 committed
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
@onnx_test
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


@onnx_test
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


kahmed10's avatar
kahmed10 committed
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3481
3482
3483
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3484
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
3495

Khalique's avatar
Khalique committed
3496
@onnx_test
Khalique's avatar
Khalique committed
3497
3498
3499
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
3500
    axes = [2, 3]
Khalique's avatar
Khalique committed
3501

Khalique's avatar
Khalique committed
3502
3503
3504
3505
3506
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
3507

Khalique's avatar
Khalique committed
3508
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3509

kahmed10's avatar
kahmed10 committed
3510

Khalique's avatar
Khalique committed
3511
@onnx_test
Khalique's avatar
Khalique committed
3512
3513
3514
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
3515
    axes = [2]
Khalique's avatar
Khalique committed
3516

Khalique's avatar
Khalique committed
3517
3518
3519
3520
3521
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
3522

Khalique's avatar
Khalique committed
3523
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3524

kahmed10's avatar
kahmed10 committed
3525

Shucai Xiao's avatar
Shucai Xiao committed
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3539

kahmed10's avatar
kahmed10 committed
3540

Khalique's avatar
Khalique committed
3541
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
3542
def reduceprod_test():
Khalique's avatar
Khalique committed
3543
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3544
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
3545
    axes = [2]
Khalique's avatar
Khalique committed
3546

Shucai Xiao's avatar
Shucai Xiao committed
3547
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
3548
3549
3550
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
3551
                                 keepdims=1)
Khalique's avatar
Khalique committed
3552

Khalique's avatar
Khalique committed
3553
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3554

Khalique's avatar
Khalique committed
3555

Khalique's avatar
Khalique committed
3556
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
3557
def reducesum_test():
Khalique's avatar
Khalique committed
3558
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3559
3560
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
3561

Khalique's avatar
Khalique committed
3562
3563
3564
3565
3566
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
3567

Khalique's avatar
Khalique committed
3568
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3569

Khalique's avatar
Khalique committed
3570

Shucai Xiao's avatar
Shucai Xiao committed
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
@onnx_test
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
3609
@onnx_test
Khalique's avatar
Khalique committed
3610
3611
3612
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
3613
    axes = [2, 3]
Khalique's avatar
Khalique committed
3614

Khalique's avatar
Khalique committed
3615
3616
3617
3618
3619
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
3620

Khalique's avatar
Khalique committed
3621
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3622

Khalique's avatar
Khalique committed
3623

Shucai Xiao's avatar
Shucai Xiao committed
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3654
@onnx_test
Khalique's avatar
Khalique committed
3655
3656
3657
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
3658
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
3659
3660
3661
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
3662
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
3663

Khalique's avatar
Khalique committed
3664
3665
3666
3667
3668
3669
3670
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
3671
3672


Khalique's avatar
Khalique committed
3673
@onnx_test
Khalique's avatar
Khalique committed
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
3685
3686
3687
3688
3689
3690
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
3691
3692


Shucai Xiao's avatar
Shucai Xiao committed
3693
3694
3695
3696
3697
3698
3699
3700
3701
@onnx_test
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
3702
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


@onnx_test
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
@onnx_test
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
@onnx_test
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
@onnx_test
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
@onnx_test
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


@onnx_test
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
@onnx_test
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3863
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
@onnx_test
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])

    return ([node], [x, roi, bi], [y])


@onnx_test
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
@onnx_test
def scatter_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'Scatter',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
@onnx_test
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3954
@onnx_test
Khalique's avatar
Khalique committed
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3965
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3966

Khalique's avatar
Khalique committed
3967

Khalique's avatar
Khalique committed
3968
@onnx_test
Khalique's avatar
Khalique committed
3969
3970
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
3971
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
3972
3973
3974
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
3975
3976
3977
3978
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
4000
4001
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
4002

Khalique's avatar
Khalique committed
4003
@onnx_test
Khalique's avatar
Khalique committed
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4014
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4015

Khalique's avatar
Khalique committed
4016

Khalique's avatar
Khalique committed
4017
@onnx_test
Khalique's avatar
Khalique committed
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4028
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4029

Khalique's avatar
Khalique committed
4030

Khalique's avatar
Khalique committed
4031
@onnx_test
Khalique's avatar
Khalique committed
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4042
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4043

Khalique's avatar
Khalique committed
4044

kahmed10's avatar
kahmed10 committed
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4092
4093
4094
4095
4096
4097
4098
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

4167
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
4168
4169
4170
4171
4172
4173
4174
4175
4176
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
    start = np.array([-1, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_step_test():
    step = np.array([-2, 2])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-5, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4262

Khalique's avatar
Khalique committed
4263
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4264

Khalique's avatar
Khalique committed
4265

Khalique's avatar
Khalique committed
4266
@onnx_test
Khalique's avatar
Khalique committed
4267
4268
4269
4270
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
4271
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
4272

Khalique's avatar
Khalique committed
4273
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4274

Khalique's avatar
Khalique committed
4275

4276
4277
4278
@onnx_test
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
4279
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

4290
    return ([node0, node1], [x], [y])
4291
4292


Shucai Xiao's avatar
Shucai Xiao committed
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
4341
@onnx_test
Khalique's avatar
Khalique committed
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4352
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4353

Khalique's avatar
Khalique committed
4354

Shucai Xiao's avatar
Shucai Xiao committed
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
@onnx_test
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
4389
@onnx_test
Khalique's avatar
Khalique committed
4390
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
4391
4392
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
4393
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
4394
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
4395

Khalique's avatar
Khalique committed
4396
4397
4398
4399
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4400

Khalique's avatar
Khalique committed
4401
4402
4403
4404
4405
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

4406
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
4407
4408


Khalique's avatar
Khalique committed
4409
@onnx_test
Khalique's avatar
Khalique committed
4410
4411
4412
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
4413
4414
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4415
4416
4417
4418
4419

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
4420
4421
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
4422
4423
    )

Khalique's avatar
Khalique committed
4424
4425
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
4426

Khalique's avatar
Khalique committed
4427
@onnx_test
Khalique's avatar
Khalique committed
4428
4429
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
4430
4431
4432
4433
4434
4435
4436
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
4437
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
4438
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
4453
4454
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
4455

Shucai Xiao's avatar
Shucai Xiao committed
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
@onnx_test
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


Khalique's avatar
Khalique committed
4476
@onnx_test
Khalique's avatar
Khalique committed
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4489
4490
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4491

Shucai Xiao's avatar
Shucai Xiao committed
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
@onnx_test
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
                                vals=valb.astype(np.bool))

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


Khalique's avatar
Khalique committed
4586
@onnx_test
Khalique's avatar
Khalique committed
4587
4588
4589
4590
4591
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
4592
4593
4594
4595
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
4596

Khalique's avatar
Khalique committed
4597
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4598

Khalique's avatar
Khalique committed
4599

Khalique's avatar
Khalique committed
4600
@onnx_test
Khalique's avatar
Khalique committed
4601
4602
4603
4604
4605
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
4606
4607
4608
4609
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
4610

Khalique's avatar
Khalique committed
4611
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4612

Khalique's avatar
Khalique committed
4613

4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
@onnx_test
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Shucai Xiao's avatar
Shucai Xiao committed
4678
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
    return ([node], [x], [val, ind])


@onnx_test
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
    return ([node], [x], [val, ind], [k_tensor])


@onnx_test
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


@onnx_test
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4762
@onnx_test
Khalique's avatar
Khalique committed
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
4774
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4775

Khalique's avatar
Khalique committed
4776

Khalique's avatar
Khalique committed
4777
4778
4779
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
4780
4781
4782
4783
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
4784
4785
4786
4787
4788
4789
4790
4791

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
4792
4793
4794
4795
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
4796
4797
4798
4799
4800
4801
4802
4803

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
4804
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
4805

Khalique's avatar
Khalique committed
4806

4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4817
@onnx_test
Khalique's avatar
Khalique committed
4818
4819
4820
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
4821
4822
4823

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
4824
4825
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
4826
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
4827

Khalique's avatar
Khalique committed
4828
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
4829

Khalique's avatar
Khalique committed
4830
    return ([node, node2], [x, y], [a])
4831
4832


4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
@onnx_test
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


Shucai Xiao's avatar
Shucai Xiao committed
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
@onnx_test
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905


@onnx_test
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])