gen_onnx.py 137 KB
Newer Older
1
2
3
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
# command: python -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
6
7
8
9
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
10

Khalique's avatar
Khalique committed
11
12
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
13
14
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
15
16
17
18
19
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
20
        else:
Khalique's avatar
Khalique committed
21
22
23
24
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
25
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
28
    return run_test

Khalique's avatar
Khalique committed
29

Khalique's avatar
Khalique committed
30
@onnx_test
Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
39
40
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
41
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
42

Khalique's avatar
Khalique committed
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
58
@onnx_test
Khalique's avatar
Khalique committed
59
60
61
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
62
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
63

Khalique's avatar
Khalique committed
64
65
66
67
68
69
70
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
71
72


Khalique's avatar
Khalique committed
73
@onnx_test
Khalique's avatar
Khalique committed
74
75
76
77
78
79
80
81
82
83
84
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
85
    return (
Khalique's avatar
Khalique committed
86
        [node],
Khalique's avatar
Khalique committed
87
        [x, y],
Khalique's avatar
Khalique committed
88
89
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
90
91
92
93
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
94
95


Khalique's avatar
Khalique committed
96
@onnx_test
Khalique's avatar
Khalique committed
97
def add_scalar_test():
98
99
100
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
101

Khalique's avatar
Khalique committed
102
103
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

104
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
105
106


Khalique's avatar
Khalique committed
107
@onnx_test
Khalique's avatar
Khalique committed
108
109
110
111
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
112
113
114
115
116
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
119

Khalique's avatar
Khalique committed
120

Khalique's avatar
Khalique committed
121
@onnx_test
Khalique's avatar
Khalique committed
122
123
124
125
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
126
127
128
129
130
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
131

Khalique's avatar
Khalique committed
132
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
133

Khalique's avatar
Khalique committed
134

Khalique's avatar
Khalique committed
135
@onnx_test
Khalique's avatar
Khalique committed
136
137
138
139
140
141
142
143
144
145
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
146
147
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
163
@onnx_test
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
173

Khalique's avatar
Khalique committed
174
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
175

Khalique's avatar
Khalique committed
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
@onnx_test
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


@onnx_test
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
@onnx_test
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


251
252
253
254
255
256
257
258
259
260
261
262
263
264
@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
@onnx_test
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


280
281
282
283
284
285
286
287
288
289
290
291
292
293
@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
@onnx_test
def batchnorm_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 3, 5])

    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)

    return ([node], [x, scale, bias, mean, var], [out])


@onnx_test
def batchnorm_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT,
                                        [1, 3, 5, 5, 5])

    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)

    return ([node], [x, scale, bias, mean, var], [out])


Khalique's avatar
Khalique committed
331
@onnx_test
Khalique's avatar
Khalique committed
332
333
334
335
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
336
337
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
338
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
339

kahmed10's avatar
kahmed10 committed
340

Shucai Xiao's avatar
Shucai Xiao committed
341
342
343
344
345
346
347
348
349
350
351
352
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
353

kahmed10's avatar
kahmed10 committed
354

Khalique's avatar
Khalique committed
355
@onnx_test
Khalique's avatar
Khalique committed
356
357
358
359
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
360
361
362
363
364
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
365

Khalique's avatar
Khalique committed
366
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
367

Khalique's avatar
Khalique committed
368

kahmed10's avatar
kahmed10 committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


Shucai Xiao's avatar
Shucai Xiao committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
@onnx_test
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


kahmed10's avatar
kahmed10 committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
420
421
422
423
424
425
426
427
428
429
@onnx_test
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
430
@onnx_test
Khalique's avatar
Khalique committed
431
432
433
434
435
436
437
438
439
440
441
442
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
443
444
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
445

Khalique's avatar
Khalique committed
446
@onnx_test
Khalique's avatar
Khalique committed
447
448
449
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
450

Khalique's avatar
Khalique committed
451
452
453
454
455
456
457
458
459
460
461
462
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
463
    return ([node], [], [y])
Khalique's avatar
Khalique committed
464

Khalique's avatar
Khalique committed
465

Khalique's avatar
Khalique committed
466
@onnx_test
Khalique's avatar
Khalique committed
467
def constant_fill_test():
Khalique's avatar
Khalique committed
468
469
470
471
472
473
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
474
475
476
477
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
478
479
    )

Khalique's avatar
Khalique committed
480
    return ([node], [], [value])
Khalique's avatar
Khalique committed
481

Khalique's avatar
Khalique committed
482

Khalique's avatar
Khalique committed
483
@onnx_test
Khalique's avatar
Khalique committed
484
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
485
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
486
487
488
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
489
490
491
492
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
493
494
495
496
497
498
499
500
501
502
503
504

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
505
506
507
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
508
509
    )

Khalique's avatar
Khalique committed
510
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
511

Khalique's avatar
Khalique committed
512

Khalique's avatar
Khalique committed
513
@onnx_test
Khalique's avatar
Khalique committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
530
    return ([node], [], [y])
Khalique's avatar
Khalique committed
531

Khalique's avatar
Khalique committed
532

Khalique's avatar
Khalique committed
533
@onnx_test
Khalique's avatar
Khalique committed
534
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
535
536
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
537
538
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
539
540
541
542
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
543
544
545
546
547
548
549
550
551
552
553
554
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
555
        value=tensor_val,
Khalique's avatar
Khalique committed
556
557
    )

Khalique's avatar
Khalique committed
558
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
559

Khalique's avatar
Khalique committed
560

Khalique's avatar
Khalique committed
561
@onnx_test
Khalique's avatar
Khalique committed
562
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
563
564
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
565
566

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
567
568
569
570
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
571
572
573
574
575
576
577
578
579

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
580
581
582
583
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
584

Khalique's avatar
Khalique committed
585
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
586

Khalique's avatar
Khalique committed
587

Khalique's avatar
Khalique committed
588
@onnx_test
Khalique's avatar
Khalique committed
589
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
590
591
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
592
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
593
594
595
596
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
597
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
598
599
600
601
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
602
603
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
604
605
606
607
608

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
609

Khalique's avatar
Khalique committed
610
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
611

Khalique's avatar
Khalique committed
612

Khalique's avatar
Khalique committed
613
@onnx_test
Khalique's avatar
Khalique committed
614
615
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
616
617
618
619
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
620
621
622
623
624
625
626
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
627

Khalique's avatar
Khalique committed
628
629
630
631
632
633
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
634
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
635

Khalique's avatar
Khalique committed
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
@onnx_test
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
674
@onnx_test
Khalique's avatar
Khalique committed
675
676
677
678
679
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
680
681
682
683
684
685
686
687
688
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
689
690


691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
707
@onnx_test
Khalique's avatar
Khalique committed
708
709
710
711
712
713
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
714
715
716
717
718
719
720
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
721
722


Khalique's avatar
Khalique committed
723
@onnx_test
Khalique's avatar
Khalique committed
724
725
726
727
728
729
730
731
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
732
733
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
734

Khalique's avatar
Khalique committed
735
736
737
738
739
740
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
741

Khalique's avatar
Khalique committed
742
743
744
745
746
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
747

Khalique's avatar
Khalique committed
748
749
750
751
752
753
754
755
756
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
757
758


Khalique's avatar
Khalique committed
759
@onnx_test
Khalique's avatar
Khalique committed
760
761
762
763
764
765
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
766
767
768
769
770
771
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
772

Khalique's avatar
Khalique committed
773
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
774

Khalique's avatar
Khalique committed
775
776
777
778
779
780
781
782
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
783
784


Khalique's avatar
Khalique committed
785
@onnx_test
Khalique's avatar
Khalique committed
786
787
788
789
790
791
792
793
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
794
795
796
797
798
799
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
800

Khalique's avatar
Khalique committed
801
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
802

Khalique's avatar
Khalique committed
803
804
805
806
807
808
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
809

Khalique's avatar
Khalique committed
810
811
812
813
814
815
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
816

Khalique's avatar
Khalique committed
817
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
818

Khalique's avatar
Khalique committed
819
820
821
822
823
824
825
826
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
827
828


829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
845
@onnx_test
Khalique's avatar
Khalique committed
846
847
848
849
850
851
852
853
854
855
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
856
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
857

Khalique's avatar
Khalique committed
858

Khalique's avatar
Khalique committed
859
@onnx_test
Khalique's avatar
Khalique committed
860
861
862
863
864
865
866
867
868
869
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
870
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
871

Khalique's avatar
Khalique committed
872

kahmed10's avatar
kahmed10 committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
950
951
952
953
954
955
956
957
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
958
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
959
960
961
962
963

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
980
981
982
983
984
985
986
987
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
@onnx_test
def dequantizelinear_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


@onnx_test
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


Khalique's avatar
Khalique committed
1063
@onnx_test
Khalique's avatar
Khalique committed
1064
def dropout_test():
Khalique's avatar
Khalique committed
1065
1066
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1067

Khalique's avatar
Khalique committed
1068
1069
1070
1071
1072
1073
1074
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1075
1076


Khalique's avatar
Khalique committed
1077
@onnx_test
Khalique's avatar
Khalique committed
1078
1079
1080
1081
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1082
1083
1084
1085
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1086

Khalique's avatar
Khalique committed
1087
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1088

Khalique's avatar
Khalique committed
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
@onnx_test
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


@onnx_test
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
@onnx_test
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
@onnx_test
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


@onnx_test
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
@onnx_test
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
1312
@onnx_test
Khalique's avatar
Khalique committed
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1323
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1324

Khalique's avatar
Khalique committed
1325

Khalique's avatar
Khalique committed
1326
@onnx_test
Khalique's avatar
Khalique committed
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1337
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1338

Khalique's avatar
Khalique committed
1339

Khalique's avatar
Khalique committed
1340
@onnx_test
Khalique's avatar
Khalique committed
1341
1342
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
1343
1344
1345
1346
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1356
1357
1358
1359
1360
1361
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1362

Khalique's avatar
Khalique committed
1363
@onnx_test
Khalique's avatar
Khalique committed
1364
1365
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1366
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1367
1368
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
1369
1370
1371
1372
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1373

Khalique's avatar
Khalique committed
1374
1375
1376
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1377

kahmed10's avatar
kahmed10 committed
1378

Shucai Xiao's avatar
Shucai Xiao committed
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1391

kahmed10's avatar
kahmed10 committed
1392

Khalique's avatar
Khalique committed
1393
@onnx_test
Khalique's avatar
Khalique committed
1394
1395
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
1396
1397
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1398
1399
1400
1401
1402
1403
1404
1405
1406
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1407
1408
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
1409

Shucai Xiao's avatar
Shucai Xiao committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
@onnx_test
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


@onnx_test
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


Khalique's avatar
Khalique committed
1442
@onnx_test
Khalique's avatar
Khalique committed
1443
1444
1445
1446
1447
1448
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
1458
1459


Khalique's avatar
Khalique committed
1460
@onnx_test
Khalique's avatar
Khalique committed
1461
def gemm_ex_test():
Shucai Xiao's avatar
Shucai Xiao committed
1462
1463
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 8, 7])
Khalique's avatar
Khalique committed
1464
1465
1466
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
1467
1468
1469
1470
1471
1472
1473
1474
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1475
1476


Khalique's avatar
Khalique committed
1477
@onnx_test
Khalique's avatar
Khalique committed
1478
1479
1480
1481
1482
1483
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
1484
1485
1486
1487
1488
1489
1490
1491
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1492
1493


Khalique's avatar
Khalique committed
1494
@onnx_test
Khalique's avatar
Khalique committed
1495
def globalavgpool_test():
Khalique's avatar
Khalique committed
1496
1497
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1498
1499
1500
1501
1502
1503
1504

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1505
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1506

Khalique's avatar
Khalique committed
1507

Khalique's avatar
Khalique committed
1508
@onnx_test
Khalique's avatar
Khalique committed
1509
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1510
1511
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1512
1513
1514
1515
1516
1517
1518

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1519
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1520

Khalique's avatar
Khalique committed
1521

Khalique's avatar
Khalique committed
1522
@onnx_test
Khalique's avatar
Khalique committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1535
1536
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1537

Shucai Xiao's avatar
Shucai Xiao committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
@onnx_test
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1592
1593
1594
1595
1596
1597
@onnx_test
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])
Shucai Xiao's avatar
Shucai Xiao committed
1598
1599
    empty_out = onnx.helper.make_tensor_value_info('empty_out',
                                                   onnx.TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
1600
1601
1602

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1603
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
1617
1618
1619
1620
1621
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
1622

Shucai Xiao's avatar
Shucai Xiao committed
1623
1624
1625
1626
1627
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


@onnx_test
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


@onnx_test
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
@onnx_test
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Khalique's avatar
Khalique committed
1903
@onnx_test
Khalique's avatar
Khalique committed
1904
def imagescaler_test():
Khalique's avatar
Khalique committed
1905
1906
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
1907

Khalique's avatar
Khalique committed
1908
1909
1910
1911
1912
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
1913

Khalique's avatar
Khalique committed
1914
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1915

Khalique's avatar
Khalique committed
1916

Shucai Xiao's avatar
Shucai Xiao committed
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1931
@onnx_test
Khalique's avatar
Khalique committed
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1943
1944
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1945

Khalique's avatar
Khalique committed
1946
@onnx_test
Khalique's avatar
Khalique committed
1947
1948
1949
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
1950
1951
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1952
1953
1954
1955
1956
1957
1958

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1959
1960
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1961

Khalique's avatar
Khalique committed
1962
@onnx_test
Khalique's avatar
Khalique committed
1963
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
1964
1965
1966
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
1967
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1968
1969
1970
1971
1972
1973
1974

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1975
1976
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1977

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


@onnx_test
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2067
2068
2069
2070
2071
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


kahmed10's avatar
kahmed10 committed
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
@onnx_test
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


Khalique's avatar
Khalique committed
2135
@onnx_test
Khalique's avatar
Khalique committed
2136
2137
2138
2139
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
2140
2141
2142
2143
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
2144

Khalique's avatar
Khalique committed
2145
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2146

Khalique's avatar
Khalique committed
2147

Khalique's avatar
Khalique committed
2148
@onnx_test
Khalique's avatar
Khalique committed
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2159
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2160

Khalique's avatar
Khalique committed
2161

Shucai Xiao's avatar
Shucai Xiao committed
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
@onnx_test
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


Khalique's avatar
Khalique committed
2195
@onnx_test
Khalique's avatar
Khalique committed
2196
2197
2198
2199
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
2200
2201
2202
2203
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
2204

Khalique's avatar
Khalique committed
2205
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2206

Khalique's avatar
Khalique committed
2207

2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
@onnx_test
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
2221
2222
2223
2224
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
2225
2226
2227
2228

    return ([node0, node1], [x], [z])


Khalique's avatar
Khalique committed
2229
@onnx_test
Khalique's avatar
Khalique committed
2230
2231
2232
2233
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
2234
2235
2236
2237
2238
2239
2240
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2241

Khalique's avatar
Khalique committed
2242
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2243

Khalique's avatar
Khalique committed
2244

Khalique's avatar
Khalique committed
2245
@onnx_test
Khalique's avatar
Khalique committed
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2257
2258
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2259

Khalique's avatar
Khalique committed
2260
@onnx_test
Khalique's avatar
Khalique committed
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2272
2273
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2274

Khalique's avatar
Khalique committed
2275
@onnx_test
Khalique's avatar
Khalique committed
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2287
2288
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2289

Khalique's avatar
Khalique committed
2290
@onnx_test
Khalique's avatar
Khalique committed
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2302
2303
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2304

Khalique's avatar
Khalique committed
2305
@onnx_test
Khalique's avatar
Khalique committed
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2317
2318
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2319

Khalique's avatar
Khalique committed
2320
@onnx_test
Khalique's avatar
Khalique committed
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2332
2333
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2334

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
2350
@onnx_test
Khalique's avatar
Khalique committed
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2363
2364
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2365

2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2396
@onnx_test
Khalique's avatar
Khalique committed
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2409
2410
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2411

Shucai Xiao's avatar
Shucai Xiao committed
2412
2413
@onnx_test
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
2414
2415
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2416
2417
2418
2419
2420
2421

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
@onnx_test
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2442
@onnx_test
Khalique's avatar
Khalique committed
2443
2444
2445
2446
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
2447
2448
2449
2450
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2451

Khalique's avatar
Khalique committed
2452
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2453

Khalique's avatar
Khalique committed
2454

Shucai Xiao's avatar
Shucai Xiao committed
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
@onnx_test
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


@onnx_test
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


kahmed10's avatar
kahmed10 committed
2487
2488
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
2489
2490
2491
2492
2493
2494
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
2506
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
2507
2508


Khalique's avatar
Khalique committed
2509
@onnx_test
Khalique's avatar
Khalique committed
2510
2511
2512
2513
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
2514
2515
2516
2517
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2518

Khalique's avatar
Khalique committed
2519
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2520

Khalique's avatar
Khalique committed
2521

2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
@onnx_test
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


kahmed10's avatar
kahmed10 committed
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
@onnx_test
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
2600
@onnx_test
Khalique's avatar
Khalique committed
2601
2602
2603
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2604
2605
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2606
2607
2608
2609
2610
2611
2612

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2613
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
2614

kahmed10's avatar
kahmed10 committed
2615

Shucai Xiao's avatar
Shucai Xiao committed
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
@onnx_test
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


turneram's avatar
turneram committed
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
@onnx_test
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
@onnx_test
def quantizelinear_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


@onnx_test
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


kahmed10's avatar
kahmed10 committed
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
@onnx_test
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


@onnx_test
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


kahmed10's avatar
kahmed10 committed
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
2882
2883
2884
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
2885
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
2896

Khalique's avatar
Khalique committed
2897
@onnx_test
Khalique's avatar
Khalique committed
2898
2899
2900
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
2901
    axes = [2, 3]
Khalique's avatar
Khalique committed
2902

Khalique's avatar
Khalique committed
2903
2904
2905
2906
2907
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
2908

Khalique's avatar
Khalique committed
2909
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2910

kahmed10's avatar
kahmed10 committed
2911

Khalique's avatar
Khalique committed
2912
@onnx_test
Khalique's avatar
Khalique committed
2913
2914
2915
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
2916
    axes = [2]
Khalique's avatar
Khalique committed
2917

Khalique's avatar
Khalique committed
2918
2919
2920
2921
2922
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
2923

Khalique's avatar
Khalique committed
2924
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2925

kahmed10's avatar
kahmed10 committed
2926

Shucai Xiao's avatar
Shucai Xiao committed
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2940

kahmed10's avatar
kahmed10 committed
2941

Khalique's avatar
Khalique committed
2942
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
2943
def reduceprod_test():
Khalique's avatar
Khalique committed
2944
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
2945
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
2946
    axes = [2]
Khalique's avatar
Khalique committed
2947

Shucai Xiao's avatar
Shucai Xiao committed
2948
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
2949
2950
2951
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
2952
                                 keepdims=1)
Khalique's avatar
Khalique committed
2953

Khalique's avatar
Khalique committed
2954
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2955

Khalique's avatar
Khalique committed
2956

Khalique's avatar
Khalique committed
2957
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
2958
def reducesum_test():
Khalique's avatar
Khalique committed
2959
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
2960
2961
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
2962

Khalique's avatar
Khalique committed
2963
2964
2965
2966
2967
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
2968

Khalique's avatar
Khalique committed
2969
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2970

Khalique's avatar
Khalique committed
2971

Shucai Xiao's avatar
Shucai Xiao committed
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
@onnx_test
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
3010
@onnx_test
Khalique's avatar
Khalique committed
3011
3012
3013
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
3014
    axes = [2, 3]
Khalique's avatar
Khalique committed
3015

Khalique's avatar
Khalique committed
3016
3017
3018
3019
3020
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
3021

Khalique's avatar
Khalique committed
3022
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3023

Khalique's avatar
Khalique committed
3024

Shucai Xiao's avatar
Shucai Xiao committed
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3055
@onnx_test
Khalique's avatar
Khalique committed
3056
3057
3058
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
3059
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
3060
3061
3062
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
3063
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
3064

Khalique's avatar
Khalique committed
3065
3066
3067
3068
3069
3070
3071
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
3072
3073


Khalique's avatar
Khalique committed
3074
@onnx_test
Khalique's avatar
Khalique committed
3075
3076
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
3077
3078
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
3079
3080
3081
3082
3083
3084
3085
3086
3087
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
3088
3089
3090
3091
3092
3093
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
3094
3095


Shucai Xiao's avatar
Shucai Xiao committed
3096
3097
3098
3099
3100
3101
3102
3103
3104
@onnx_test
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
3105
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


@onnx_test
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
@onnx_test
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
@onnx_test
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
@onnx_test
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
@onnx_test
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


@onnx_test
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
@onnx_test
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
@onnx_test
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3302
@onnx_test
Khalique's avatar
Khalique committed
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3313
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3314

Khalique's avatar
Khalique committed
3315

Khalique's avatar
Khalique committed
3316
@onnx_test
Khalique's avatar
Khalique committed
3317
3318
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
3319
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
3320
3321
3322
3323
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
3324
3325
3326
3327
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
3349
3350
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
3351

Khalique's avatar
Khalique committed
3352
@onnx_test
Khalique's avatar
Khalique committed
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3363
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3364

Khalique's avatar
Khalique committed
3365

Khalique's avatar
Khalique committed
3366
@onnx_test
Khalique's avatar
Khalique committed
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3377
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3378

Khalique's avatar
Khalique committed
3379

Khalique's avatar
Khalique committed
3380
@onnx_test
Khalique's avatar
Khalique committed
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3391
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3392

Khalique's avatar
Khalique committed
3393

kahmed10's avatar
kahmed10 committed
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3441
3442
3443
3444
3445
3446
3447
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3558

Khalique's avatar
Khalique committed
3559
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3560

Khalique's avatar
Khalique committed
3561

Khalique's avatar
Khalique committed
3562
@onnx_test
Khalique's avatar
Khalique committed
3563
3564
3565
3566
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
3567
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
3568

Khalique's avatar
Khalique committed
3569
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3570

Khalique's avatar
Khalique committed
3571

3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
@onnx_test
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

    return ([node0, node1], [x], [z])


Shucai Xiao's avatar
Shucai Xiao committed
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
3638
@onnx_test
Khalique's avatar
Khalique committed
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3649
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3650

Khalique's avatar
Khalique committed
3651

Shucai Xiao's avatar
Shucai Xiao committed
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
@onnx_test
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
3686
@onnx_test
Khalique's avatar
Khalique committed
3687
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
3688
3689
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
3690
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
3691
3692
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
3693

Khalique's avatar
Khalique committed
3694
3695
3696
3697
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3698

Khalique's avatar
Khalique committed
3699
3700
3701
3702
3703
3704
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
3705
3706


Khalique's avatar
Khalique committed
3707
@onnx_test
Khalique's avatar
Khalique committed
3708
3709
3710
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
3711
3712
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3713
3714
3715
3716
3717

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
3718
3719
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
3720
3721
    )

Khalique's avatar
Khalique committed
3722
3723
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3724

Khalique's avatar
Khalique committed
3725
@onnx_test
Khalique's avatar
Khalique committed
3726
3727
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
3728
3729
3730
3731
3732
3733
3734
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
3735
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
3736
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3751
3752
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
3753

Shucai Xiao's avatar
Shucai Xiao committed
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
@onnx_test
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


Khalique's avatar
Khalique committed
3774
@onnx_test
Khalique's avatar
Khalique committed
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3787
3788
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3789

Shucai Xiao's avatar
Shucai Xiao committed
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
@onnx_test
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
                                vals=valb.astype(np.bool))

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


Khalique's avatar
Khalique committed
3884
@onnx_test
Khalique's avatar
Khalique committed
3885
3886
3887
3888
3889
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
3890
3891
3892
3893
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
3894

Khalique's avatar
Khalique committed
3895
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3896

Khalique's avatar
Khalique committed
3897

Khalique's avatar
Khalique committed
3898
@onnx_test
Khalique's avatar
Khalique committed
3899
3900
3901
3902
3903
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
3904
3905
3906
3907
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
3908

Khalique's avatar
Khalique committed
3909
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3910

Khalique's avatar
Khalique committed
3911

kahmed10's avatar
kahmed10 committed
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Khalique's avatar
Khalique committed
3936
@onnx_test
Khalique's avatar
Khalique committed
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
3948
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3949

Khalique's avatar
Khalique committed
3950

Khalique's avatar
Khalique committed
3951
3952
3953
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
3954
3955
3956
3957
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
3958
3959
3960
3961
3962
3963
3964
3965

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
3966
3967
3968
3969
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
3970
3971
3972
3973
3974
3975
3976
3977

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
3978
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
3979

Khalique's avatar
Khalique committed
3980

3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3991
@onnx_test
Khalique's avatar
Khalique committed
3992
3993
3994
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
3995
3996
3997

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
3998
3999
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
4000
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
4001

Khalique's avatar
Khalique committed
4002
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
4003

Khalique's avatar
Khalique committed
4004
    return ([node, node2], [x, y], [a])
4005
4006


4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
@onnx_test
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


Shucai Xiao's avatar
Shucai Xiao committed
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
@onnx_test
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079


@onnx_test
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])