"src/vscode:/vscode.git/clone" did not exist on "a5b9ca161213d1ec15ab7d01ba76bbcb386db918"
lowering.cpp 22.9 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
5
#include <migraphx/op/identity.hpp>
6
#include <migraphx/op/batch_norm_inference.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
8
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
10
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
22
#include <migraphx/op/rnn_var_sl_last_output.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/par_dfor.hpp>
26
#include <migraphx/clamp.hpp>
27
28
#include <migraphx/cpu/migemm.hpp>
#include <migraphx/cpu/context.hpp>
29
#include <migraphx/register_op.hpp>
30
#include <migraphx/make_op.hpp>
31
#include <migraphx/program.hpp>
32
#include <migraphx/tune_axis.hpp>
Paul's avatar
Paul committed
33
#include <unordered_map>
Paul's avatar
Paul committed
34
#include <utility>
kahmed10's avatar
kahmed10 committed
35
#include <iostream>
Paul's avatar
Paul committed
36

Paul's avatar
Paul committed
37
namespace migraphx {
Paul's avatar
Paul committed
38
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
39
40
41
42
43
44
45
46
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
47
48
49
50
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
51
52
53
54
{
    return x;
}

Khalique's avatar
Khalique committed
55
struct cpu_lrn
Khalique's avatar
Khalique committed
56
{
Khalique's avatar
Khalique committed
57
    op::lrn op;
Khalique's avatar
Khalique committed
58

59
60
61
62
63
64
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
65
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
66
67
68
69
70
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
71
72
73
74
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
75
            float alphaoverarea = op.alpha / float(op.size);
76
77
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
78

79
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
80
                float scale = 0;
Khalique's avatar
Khalique committed
81
                dfor(channels)([&](int c) {
82
83
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
84
85
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
86
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
87
88
89
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
90
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
91
92
93
94
95
96
97
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};
98
MIGRAPHX_REGISTER_OP(cpu_lrn)
Khalique's avatar
Khalique committed
99

kahmed10's avatar
kahmed10 committed
100
template <class Op>
101
struct cpu_deconvolution : auto_register_op<cpu_deconvolution<Op>>
kahmed10's avatar
kahmed10 committed
102
{
103
104
105
106
    cpu_deconvolution() = default;

    cpu_deconvolution(Op pop) : op(std::move(pop)) {}

kahmed10's avatar
kahmed10 committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

kahmed10's avatar
kahmed10 committed
125
126
127
            auto in_lens = input.get_shape().lens();
            auto in_n    = in_lens[0];
            auto in_c    = in_lens[1];
kahmed10's avatar
kahmed10 committed
128
129
130
131

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
kahmed10's avatar
kahmed10 committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

            auto out_lens = output_shape.lens();
            auto kdims    = op.kdims();

            std::vector<std::size_t> win_size{in_c};
            std::copy(in_lens.begin() + 2, in_lens.end(), std::back_inserter(win_size));
            std::copy(wei.begin() + 2, wei.end(), std::back_inserter(win_size));
            shape win_shape{output_shape.type(), win_size};

            par_dfor(in_n, wei_c)([&](int o, int k) {

                shape_for_each(win_shape, [&](auto idx_win) {
                    const int w = idx_win[0];

                    auto input_dims_start = idx_win.begin() + 1;
                    auto wei_dims_start   = idx_win.begin() + kdims + 1;

                    std::vector<std::ptrdiff_t> win_start;
                    for(std::size_t n = 0; n < kdims; ++n)
                    {
                        win_start.push_back(std::ptrdiff_t(*(input_dims_start + n) * op.stride[n]) -
                                            std::ptrdiff_t(op.padding[n]));
                    }

                    const int group_id = w / (wei_n / op.group);
                    const int in_ch    = group_id * wei_c + k;

                    std::vector<std::ptrdiff_t> idx_out{o, in_ch};

                    for(size_t n = 0; n < kdims; n++)
                    {
                        idx_out.push_back(win_start[n] + *(wei_dims_start + n) * op.dilation[n]);
                    }

                    std::vector<std::ptrdiff_t> idx_wei{w, k};
                    std::copy(wei_dims_start, idx_win.end(), std::back_inserter(idx_wei));

                    std::vector<std::ptrdiff_t> idx_in{o, w};
                    std::copy(input_dims_start, wei_dims_start, std::back_inserter(idx_in));

                    if(std::all_of(
                           idx_out.begin() + 2, idx_out.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx_out.begin() + 2,
                                  idx_out.end(),
                                  out_lens.begin() + 2,
                                  out_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        output(idx_out.begin(), idx_out.end()) +=
                            input(idx_in.begin(), idx_in.end()) *
                            weights(idx_wei.begin(), idx_wei.end());
                    }
                });

kahmed10's avatar
kahmed10 committed
186
            });
kahmed10's avatar
kahmed10 committed
187

kahmed10's avatar
kahmed10 committed
188
189
190
191
        });
        return result;
    }
};
192
template struct cpu_deconvolution<op::deconvolution>;
kahmed10's avatar
kahmed10 committed
193

Scott Thornton's avatar
Scott Thornton committed
194
195
struct cpu_im2col
{
196
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
197

198
199
200
201
202
203
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
204
205
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
206

wsttiger's avatar
wsttiger committed
207
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
208
    {
Scott Thornton's avatar
Scott Thornton committed
209
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
210
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
211
212
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
213
214
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
215
216
217
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
218
219
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
220
221
222
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
223
224
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
225
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
226
227
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
228
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
229
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
230
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
231
232
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
233
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
234
235
236
237
238
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
239
240
241
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
242
243
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
244
245
246
247
248
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
249
250
                }
            }
Scott Thornton's avatar
Scott Thornton committed
251
        });
Scott Thornton's avatar
Scott Thornton committed
252
253
254
        return result;
    }
};
255
MIGRAPHX_REGISTER_OP(cpu_im2col)
Scott Thornton's avatar
Scott Thornton committed
256

257
struct cpu_op
Paul's avatar
Paul committed
258
{
259
    operation op = op::identity{};
kahmed10's avatar
kahmed10 committed
260
261
262
263
264
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
265
    std::string name() const { return "cpu::op"; }
Paul's avatar
Paul committed
266
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
267
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
268
    {
Paul's avatar
Paul committed
269
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
270
    }
271
272
273
274
275
276
277
278
279
280
281
    value to_value() const
    {
        value v;
        v["name"]     = op.name();
        v["operator"] = op.to_value();
        return v;
    }
    void from_value(const value& v)
    {
        op = make_op(v.at("name").to<std::string>(), v.at("operator"));
    }
282
    friend std::ostream& operator<<(std::ostream& os, const cpu_op& x)
Paul's avatar
Paul committed
283
    {
284
285
        os << "cpu::" << x.op;
        return os;
Paul's avatar
Paul committed
286
287
    }
};
288
MIGRAPHX_REGISTER_OP(cpu_op)
Paul's avatar
Paul committed
289

Khalique's avatar
Khalique committed
290
struct cpu_pad
291
{
Khalique's avatar
Khalique committed
292
    op::pad op;
293
294
295
296
297
298
299

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

kahmed10's avatar
kahmed10 committed
300
    std::string name() const { return "cpu::pad"; }
301
302
303
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
304
        assert(output_shape.standard());
305
        argument result{output_shape};
306
307
308
309
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
310
311

        visit_all(result, args[0])([&](auto output, auto input) {
312
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
313
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
314
315
316
317
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
318
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
319
            });
Khalique's avatar
Khalique committed
320
321
        });

322
323
324
        return result;
    }
};
325
MIGRAPHX_REGISTER_OP(cpu_pad)
326

Khalique's avatar
Khalique committed
327
328
329
330
331
332
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
333
        auto a = op.alpha;
Khalique's avatar
Khalique committed
334
335
336
337
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
338
339
340
341
342
343
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
344
        auto a = op.alpha;
Khalique's avatar
Khalique committed
345
346
347
348
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
349
template <typename Op>
350
struct cpu_unary2 : auto_register_op<cpu_unary2<Op>>
Paul's avatar
Paul committed
351
{
352
    cpu_unary2() = default;
353
354

    template <class T>
355
    cpu_unary2(T pop) : op(Op{std::move(pop)})
356
357
358
    {
    }

Paul's avatar
Paul committed
359
    Op op;
360
361
362
363
364
365

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
366
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
367
    shape compute_shape(const std::vector<shape>& inputs) const
368
    {
369
        check_shapes{inputs, *this}.has(1);
Shucai Xiao's avatar
Shucai Xiao committed
370
        auto s = inputs.at(0);
371
        return {s.type(), s.lens()};
372
373
    }

Paul's avatar
Paul committed
374
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
375
376
    {
        argument result{output_shape};
377
378
379
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
380
        });
381

Paul's avatar
Paul committed
382
383
384
        return result;
    }
};
385
386
template struct cpu_unary2<leaky_relu_op>;
template struct cpu_unary2<elu_op>;
Paul's avatar
Paul committed
387

388
template <class Op>
389
struct cpu_softmax : auto_register_op<cpu_softmax<Op>>
Paul's avatar
Paul committed
390
{
391
392
393
394
    cpu_softmax() = default;

    cpu_softmax(Op pop) : op(std::move(pop)) {}

395
    Op op;
Khalique's avatar
Khalique committed
396
397
398
399
400
401
402

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

403
    std::string name() const { return "cpu::" + op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
404
405
406
407
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        return op.normalize_compute_shape(inputs);
    }
Paul's avatar
Paul committed
408
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
409
410
    {
        argument result{output_shape};
411
412
413
        auto batch_lens        = output_shape.lens();
        int64_t tuned_axis     = tune_axis(args[0].get_shape().lens().size(), op.axis, op.name());
        std::size_t n_dims     = batch_lens[tuned_axis];
414
        batch_lens[tuned_axis] = 1;
415
416
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
417
418
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
419
420
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
421
422
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
423
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
424
                for(std::size_t j = 0; j < n_dims; ++j)
425
                {
426
427
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
428
                }
Khalique's avatar
Khalique committed
429

Shucai Xiao's avatar
Shucai Xiao committed
430
                for(std::size_t j = 0; j < n_dims; ++j)
431
                {
432
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
433
434
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
435
                }
Khalique's avatar
Khalique committed
436

Shucai Xiao's avatar
Shucai Xiao committed
437
                for(std::size_t j = 0; j < n_dims; ++j)
438
                {
439
                    idx[tuned_axis] = j;
440
441
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
442

Shucai Xiao's avatar
Shucai Xiao committed
443
                for(std::size_t j = 0; j < n_dims; ++j)
444
                {
445
                    idx[tuned_axis] = j;
446
447
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
448
                }
Shucai Xiao's avatar
Shucai Xiao committed
449
450
451
452
453
454
            });
        });

        return result;
    }
};
455
456
template struct cpu_softmax<op::softmax>;
template struct cpu_softmax<op::logsoftmax>;
Shucai Xiao's avatar
Shucai Xiao committed
457

Shucai Xiao's avatar
Shucai Xiao committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
struct cpu_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};
503
MIGRAPHX_REGISTER_OP(cpu_rnn_var_sl_last_output)
Shucai Xiao's avatar
Shucai Xiao committed
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
struct cpu_literal
{
    argument data;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.data, "data"));
    }

    std::string name() const { return "cpu::literal"; }

    shape compute_shape(const std::vector<shape>&) const { return data.get_shape(); }

    argument compute(const shape&, const std::vector<argument>&) const { return data; }

    friend std::ostream& operator<<(std::ostream& os, const cpu_literal& x)
    {
        os << x.name();
        return os;
    }
};

Paul's avatar
Paul committed
528
529
struct cpu_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
530
    module* modl;
531
532
533
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
    instruction_ref last{};
Paul's avatar
Paul committed
534

535
536
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
537
        this->last = instruction::get_output_alias(std::prev(modl->end()));
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
        if(this->last->name() == "@return")
        {
            const auto& prog_outputs = last->inputs();
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
                prog_output_names[ins] = "#output_" + std::to_string(index++);
            }
        }
    }

    void extend_op(const std::string& op_name, const std::string& cpu_name, bool allocate = false)
    {
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op = ins->get_operator();
            if(allocate)
                replace(ins, make_op(cpu_name, op.to_value()));
Shucai Xiao's avatar
Shucai Xiao committed
562
            return modl->replace_instruction(ins, make_op(cpu_name, op.to_value()), ins->inputs());
563
564
565
566
567
568
        });
    }

    void extend_dnnl_extend_op(const std::string& op_name,
                               const std::string& cpu_name,
                               const std::string& dnnl_name)
Paul's avatar
Paul committed
569
    {
570
571
572
573
574
575
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op = ins->get_operator();
            if(has_op(dnnl_name) and ins->get_shape().type() == shape::type_t::float_type)
                return replace(ins, make_op(dnnl_name, op.to_value()));
            return replace(ins, make_op(cpu_name, op.to_value()));
        });
Paul's avatar
Paul committed
576
577
    }

578
    void extend_dnnl_extend_op(const std::string& op_name, const std::string& dnnl_name)
Paul's avatar
Paul committed
579
    {
580
581
582
583
584
585
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op = ins->get_operator();
            if(has_op(dnnl_name) and ins->get_shape().type() == shape::type_t::float_type)
                return replace(ins, make_op(dnnl_name, op.to_value()));
            return ins;
        });
Paul's avatar
Paul committed
586
587
588
589
    }

    void init()
    {
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        create_output_names();
        extend_dnnl_extend_op("add", "cpu::add", "dnnl::add");
        extend_dnnl_extend_op("mul", "cpu::mul", "dnnl::mul");
        extend_dnnl_extend_op("convolution", "cpu::convolution", "dnnl::convolution");
        extend_dnnl_extend_op("dot", "cpu::dot", "dnnl::dot");
        extend_dnnl_extend_op("relu", "cpu::relu", "dnnl::relu");
        extend_dnnl_extend_op("concat", "dnnl::concat");
        extend_op("contiguous", "cpu::contiguous", true);
        extend_op("deconvolution", "cpu::deconvolution");
        extend_op("elu", "cpu::elu");
        extend_op("im2col", "cpu::im2col");
        extend_op("leaky_relu", "cpu::leaky_relu");
        extend_op("logsoftmax", "cpu::logsoftmax");
        extend_op("lrn", "cpu::lrn");
        extend_op("pad", "cpu::pad");
        extend_op("quant_convolution", "cpu::quant_convolution", true);
        extend_op("quant_dot", "cpu::quant_dot", true);
        extend_op("rnn_var_sl_last_output", "cpu::rnn_var_sl_last_output");
        extend_op("softmax", "cpu::softmax");
Paul's avatar
Paul committed
609
610
611
612
613
    }

    void apply()
    {
        init();
Shucai Xiao's avatar
Shucai Xiao committed
614
        for(auto it : iterator_for(*modl))
Paul's avatar
Paul committed
615
        {
616
617
618
619
620
            if(it->name() == "@literal")
            {
                apply_literal(it);
            }
            else if(it->name() == "pooling")
Paul's avatar
Paul committed
621
622
623
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
624
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
625
            {
Paul's avatar
Paul committed
626
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
627
628
629
630
            }
        }
    }

631
    instruction_ref apply_literal(instruction_ref ins) const
632
    {
Shucai Xiao's avatar
Shucai Xiao committed
633
        return modl->replace_instruction(ins, cpu_literal{ins->get_literal().get_argument()});
634
635
    }

636
    instruction_ref apply_pooling(instruction_ref ins)
Paul's avatar
Paul committed
637
    {
638
639
640
641
642
643
644
645
646
647
648
        auto&& op = ins->get_operator();
        auto v    = op.to_value();
        if(has_op("dnnl::pooling") and ins->get_shape().type() == shape::type_t::float_type and
           not v["ceil_mode"].to<bool>())
            return replace(ins, make_op("dnnl::pooling", op.to_value()));
        std::string mode = v["mode"].to<std::string>();
        if(mode == "max")
            return replace(ins, make_op("cpu::pooling_max", v));
        else if(mode == "average")
            return replace(ins, make_op("cpu::pooling_average", v));
        return ins;
Paul's avatar
Paul committed
649
650
    }

651
    instruction_ref replace(instruction_ref ins, const operation& op)
Paul's avatar
Paul committed
652
    {
653
654
        auto inputs = ins->inputs();
        inputs.push_back(insert_allocation(ins, ins->get_shape()));
Shucai Xiao's avatar
Shucai Xiao committed
655
        return modl->replace_instruction(ins, op, inputs);
Paul's avatar
Paul committed
656
657
    }

658
    instruction_ref insert_allocation(instruction_ref ins, const shape& s)
Paul's avatar
Paul committed
659
    {
660
661
662
        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
663
            return modl->add_parameter(prog_output_names[ins_alias], s);
664
665
666
        }
        else if(ins == last)
        {
Shucai Xiao's avatar
Shucai Xiao committed
667
            return modl->add_parameter("output", s);
668
669
        }

Shucai Xiao's avatar
Shucai Xiao committed
670
        return modl->insert_instruction(ins, make_op("cpu::allocate", {{"shape", to_value(s)}}));
Paul's avatar
Paul committed
671
672
673
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
674
void lowering::apply(module& m) const { cpu_apply{&m}.apply(); }
Paul's avatar
Paul committed
675
676

} // namespace cpu
Paul's avatar
Paul committed
677
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
678
} // namespace migraphx