task.py 45.9 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
    metric_list: list = None
82
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

Ethan Smith's avatar
Ethan Smith committed
91
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
95

lintangsutawika's avatar
lintangsutawika committed
96
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
97

Lintang Sutawika's avatar
Lintang Sutawika committed
98
99
100
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
101
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                )
103
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
111
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
112
113
114
115
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
116
                    "until": None
117
118
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
121
                    "do_sample": False,
                    "temperature": 0.0,
                }
122

haileyschoelkopf's avatar
haileyschoelkopf committed
123
124
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self):
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
146
147
148
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
        return cfg_dict
150

151
152
153
154
155
156
157
158
159
160
161
162

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
163

164
165
166
167
168
169
170
171
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
172

173
174
175
176
177
178
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
179
    ) -> None:
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
206
        self._config = TaskConfig(**config) if config else TaskConfig()
207
208
209

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
210
            for name, components in self._config.get(
211
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
212
            ):
213
214
215
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
216
        self.sampler = samplers.Sampler(
217
218
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
219

Ethan Smith's avatar
Ethan Smith committed
220
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
245
246
247
248
249
250
251
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
252

253
254
255
256
257
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

294
295
296
297
298
299
300
301
302
303
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
304
            eval_logger.warning(
305
                "has_training_docs and has_validation_docs are False"
306
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
307
            )
308
309
            return self.test_docs()

310
311
312
313
314
315
316
317
318
319
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
320

321
322
323
324
325
326
327
328
329
330
331
332
333
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
334
    def doc_to_decontamination_query(self, doc) -> None:
335
336
337
338
339
340
341
342
343
344
345
346
347
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
348
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
349
350
351
352
353
354
355
356
357
358
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

359
        eval_logger.info(
360
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
361
362
        )

363
        instances = []
364
365
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
366
        ):
367
            # sample fewshot context #TODO: need to offset doc_id by rank now!
368
            fewshot_ctx = self.fewshot_context(
369
                doc,
370
                self.config.num_fewshot,
371
            )
372

373
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
374
375
376
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
377
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
378
            )
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
404
            The number of times each instance in a dataset is inferred on. Defaults to 1,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
440
441
442
443
444
445
446
447
448
449
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

450
    @utils.positional_deprecated
451
    def fewshot_context(self, doc, num_fewshot):
452
453
454
455
456
457
458
459
460
461
462
463
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
464
            # always prepend the (possibly empty) task description
465
            labeled_examples = self.config.description
466
        else:
467
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
468
469
                doc, num_fewshot
            )
470
471

        example = self.doc_to_text(doc)
472
473
474
475
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
476
        elif type(example) == int:
477
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
478
479
480
481
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
482
483

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
489
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
490

baberabb's avatar
baberabb committed
491
    def dump_config(self) -> dict:
492
        """Returns a dictionary representing the task's config.
493
494
495
496
497

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
498
        # (num_fewshot)
499
        return self.config.to_dict()
500

501
502

class ConfigurableTask(Task):
503
    VERSION = "Yaml"
504
    OUTPUT_TYPE = None
505
    CONFIG = None
506
507
508

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
509
    ) -> None:  # TODO no super() call here
510
        # Get pre-configured attributes
511
        self._config = self.CONFIG
512

513
        # Use new configurations if there was no preconfiguration
514
        if self.config is None:
515
            self._config = TaskConfig(**config)
516
517
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
518
            if config is not None:
519
                self._config.__dict__.update(config)
520

521
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
522
523
524
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
525

526
527
528
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
529

530
531
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
532

533
534
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
535

536
537
538
539
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
540

541
542
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
543
            # TODO: handle this in TaskConfig.__post_init__ ?
544
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
545
546
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
547
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
548
549
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
550
        else:
551
            for metric_config in self.config.metric_list:
552
553
554
555
556
557
558
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
559

560
                if self.config.process_results is not None:
561
562
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
563
564
565
566
567
568
569
570
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
571

572
                if "aggregation" in metric_config:
573
                    agg_name = metric_config["aggregation"]
574
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
575
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
576
577
578
579
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
580
                else:
581
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
582
                    metric_agg = get_default_aggregation(metric_name)
583
                    eval_logger.warning(
584
585
586
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
587
                    )
588
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
589

590
591
592
593
594
595
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
596
597
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
598
                        f"higher_is_better={is_higher_better(metric_name)}"
599
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
600
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
601

602
        self.download(self.config.dataset_kwargs)
603
604
605
        self._training_docs = None
        self._fewshot_docs = None

606
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
607
            self._filters = []
608
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
609
610
611
612
613
614
615
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
616
617
618
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
619
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
620
        else:
621
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
622

623
624
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
625
            self.prompt = get_prompt(
626
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
627
            )
628
629
630
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
631
632
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
633
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
634
            )
635

636
        if self.has_test_docs():
637
            self.task_docs = self.test_docs()
638
        elif self.has_validation_docs():
639
            self.task_docs = self.validation_docs()
640
641
642
643
644
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

645
        # Test One Doc
646
        self.features = list(self.task_docs.features.keys())
647
648
        self.multiple_input = 0
        self.multiple_target = 0
649
        test_doc = self.task_docs[0]
650
        test_text = self.doc_to_text(test_doc)
651
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
652

653
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
654
655
656
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
657
658
            else:
                num_choice = len(test_choice)
659

660
661
            if type(test_text) is int:
                self.multiple_input = num_choice
662
663
        else:
            test_choice = None
664

665
        if type(test_target) is list:
666
            self.multiple_target = len(test_target)
667
        else:
lintangsutawika's avatar
lintangsutawika committed
668
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
669
                test_target = test_choice[test_target]
670
            else:
lintangsutawika's avatar
lintangsutawika committed
671
                test_target = str(test_target)
672

673
674
675
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
676
            check_choices = [test_target]
677
678
679
680

        for choice in check_choices:
            choice_has_whitespace = True if " " in choice else False
            delimiter_has_whitespace = (
681
                True if " " in self.config.target_delimiter else False
682
683
684
685
686
687
688
            )

            if delimiter_has_whitespace and choice_has_whitespace:
                eval_logger.warning(
                    f'Both target_delimiter and target choice: "{choice}" have whitespace'
                )
            elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
689
                eval_logger.warning(
690
                    f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
691
                )
692

Ethan Smith's avatar
Ethan Smith committed
693
    def download(self, dataset_kwargs=None) -> None:
694
695
696
697
698
699
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
700
    def has_training_docs(self) -> bool:
701
        if self.config.training_split is not None:
702
703
704
705
            return True
        else:
            return False

baberabb's avatar
baberabb committed
706
    def has_validation_docs(self) -> bool:
707
        if self.config.validation_split is not None:
708
709
710
711
            return True
        else:
            return False

baberabb's avatar
baberabb committed
712
    def has_test_docs(self) -> bool:
713
        if self.config.test_split is not None:
714
715
716
717
            return True
        else:
            return False

baberabb's avatar
baberabb committed
718
    def training_docs(self) -> datasets.Dataset:
719
        if self.has_training_docs():
720
721
722
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
723
                )
724
            return self.dataset[self.config.training_split]
725

baberabb's avatar
baberabb committed
726
    def validation_docs(self) -> datasets.Dataset:
727
        if self.has_validation_docs():
728
729
730
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
731
                )
732
            return self.dataset[self.config.validation_split]
733

baberabb's avatar
baberabb committed
734
    def test_docs(self) -> datasets.Dataset:
735
        if self.has_test_docs():
736
737
738
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
739

740
    def fewshot_docs(self):
741
742
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
743
        else:
744
            if self.config.num_fewshot > 0:
745
                eval_logger.warning(
746
                    f"Task '{self.config.task}': "
747
748
749
750
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
751

752
753
754
755
756
757
758
759
760
    def apply_filters(self):

        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

761
    def should_decontaminate(self):
762
        return self.config.should_decontaminate
763
764

    def doc_to_decontamination_query(self, doc):
765
766
767
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
768
769
            else:
                return ast.literal_eval(
770
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
771
                )
772

773
774
775
776
777
778
779
780
781
782
783
784
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
785
786
        if self.prompt is not None:
            doc_to_text = self.prompt
787
        else:
788
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
789

790
791
792
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
793
            if doc_to_text in self.features:
794
                # if self.config.doc_to_choice is not None:
795
796
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
797
798
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
799
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
800
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
801
802
803
                    return ast.literal_eval(text_string)
                else:
                    return text_string
804
        elif callable(doc_to_text):
805
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
806
        # Used when applying a Promptsource template
807
        elif hasattr(doc_to_text, "apply"):
808
809
810
811
812
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
813
                return self.config.fewshot_delimiter
814
        else:
815
            print(type(doc_to_text))
816
            raise TypeError
817

818
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
819
820
        if self.prompt is not None:
            doc_to_target = self.prompt
821
        else:
822
            doc_to_target = self.config.doc_to_target
823

824
825
826
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
827
            if doc_to_target in self.features:
828
                # if self.config.doc_to_choice is not None:
829
830
831
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
832
            else:
lintangsutawika's avatar
lintangsutawika committed
833
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
834
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
835
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
841
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
842
843
                else:
                    return target_string
844
845
        elif type(doc_to_target) == list:
            return doc_to_target
846
        elif callable(doc_to_target):
847
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
848
        # Used when applying a Promptsource template
849
        elif hasattr(doc_to_target, "apply"):
850
            applied_prompt = doc_to_target.apply(doc)
851
852
853
854
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
855
                return self.config.fewshot_delimiter
856
857
        else:
            raise TypeError
858

baberabb's avatar
baberabb committed
859
    def doc_to_choice(self, doc: Any) -> List[str]:
860
861
        if self.prompt is not None:
            doc_to_choice = self.prompt
862
        elif self.config.doc_to_choice is None:
863
864
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
865
            doc_to_choice = self.config.doc_to_choice
866
867
868
869
870
871
872
873
874
875
876
877
878

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
879

880
    def gold_alias(self, doc):
881
882
883
884
885
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
886
887
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
888
        else:
lintangsutawika's avatar
lintangsutawika committed
889
            return self.doc_to_target(doc)
890
891
892
893
894
895
896
897
898
899

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
900
901
902
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
903
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
904
            arguments = (ctx, self.doc_to_target(doc))
905
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
906
            arguments = (self.doc_to_target(doc),)
907
        elif self.OUTPUT_TYPE == "multiple_choice":
908
            choices = self.doc_to_choice(doc)
909
            target_delimiter = self.config.target_delimiter
910
911
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
912
                cont = self.doc_to_target(doc)
913
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
914
            else:
915
                # Otherwise they are placed in the continuation
916
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
917

918
            request_list = [
919
920
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
921
                    doc=doc,
922
                    arguments=arg,
923
                    idx=i,
924
925
                    **kwargs,
                )
926
                for i, arg in enumerate(arguments)
927
            ]
928
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
929
            if "acc_mutual_info" in self._metric_fn_list.keys():
930
931
932
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
933
                # here mutual info refers to calculating
934
935
936
937
938
939
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
940
                            doc=doc,
941
                            arguments=("", "{}".format(choice)),
942
943
944
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
945
                        for i, choice in enumerate(choices)
946
947
948
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
949

950
        elif self.OUTPUT_TYPE == "greedy_until":
951
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
952
953

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
954
955
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
956
957
958

    def process_results(self, doc, results):

959
960
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
961

962
        result_dict = {}
963
        use_metric = list(self._metric_fn_list.keys())
964
965
966
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
967
968
969
970
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
971
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
972
            (loglikelihood,) = results
973
974
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
975
            return {
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
991
            }
992
        elif self.OUTPUT_TYPE == "multiple_choice":
993
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
994

995
            # retrieve choices in List[str] form, to compute choice lengths, etc.
996
            choices = self.doc_to_choice(doc)
997
998
            completion_len = np.array([float(len(i)) for i in choices])

999
1000
            if (
                2 * len(choices) == len(lls)
1001
                and "acc_mutual_info" in self._metric_fn_list.keys()
1002
1003
1004
1005
1006
1007
1008
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1009

1010
1011
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1012

1013
1014
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1015
            else:
1016
                gold = self.doc_to_target(doc)
1017
1018
1019

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1020
1021
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1022
1023
1024
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1025
                    gold = gold if gold < len(choices) else -100
1026
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1027
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1028

Lintang Sutawika's avatar
Lintang Sutawika committed
1029
                if gold == -100:
1030
1031
1032
1033
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1034
                    f"Label index was not in within range of available choices,"
1035
1036
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1037

1038
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1039
1040
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1041
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1042
1043
1044
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1045
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1046
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1047
1048

            result_dict = {
1049
                **({"acc": acc} if "acc" in use_metric else {}),
1050
1051
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1052
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1053
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1054
1055
            }

1056
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1057
1058
1059
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1060
1061
1062
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1063
        elif self.OUTPUT_TYPE == "greedy_until":
1064
            gold = self.doc_to_target(doc)
1065
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1066
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1067
                # it assumes that doc_to_target returns a number.
1068
1069
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1070
1071
            else:
                gold = str(gold)
1072

lintangsutawika's avatar
lintangsutawika committed
1073
            result = results[0]
lintangsutawika's avatar
lintangsutawika committed
1074
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1075
1076
1077
1078
1079
1080
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
1081
                        try:
1082
                            result_score = self._metric_fn_list[metric](
1083
1084
                                references=[gold_option],
                                predictions=[result],
1085
                                **self._metric_fn_kwargs[metric],
1086
1087
                            )
                        except TypeError:  # TODO: this is hacky and I don't want to do it
1088
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1089
1090
1091
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1092
                            # TODO: this handles the case where HF evaluate returns a dict.
1093
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1094
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1095
                    if any(scores):
1096
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1097
                    else:
1098
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1099
                else:
1100
                    try:
1101
                        result_score = self._metric_fn_list[metric](
1102
1103
                            references=[gold],
                            predictions=[result],
1104
                            **self._metric_fn_kwargs[metric],
1105
                        )
1106
1107
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                        result_score = self._metric_fn_list[metric]([gold, result])
1108
1109
1110
1111
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1112
        else:
lintangsutawika's avatar
lintangsutawika committed
1113
1114
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1115
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1116
            )
1117
1118
1119
1120
1121
1122
1123

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1124
        return self._higher_is_better
1125
1126
1127
1128
1129


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1130
    def doc_to_target(self, doc: dict) -> str:
1131
1132
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1133
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1134
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1135
1136
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1138
                doc=doc,
1139
                arguments=(ctx, " {}".format(choice)),
1140
                idx=i,
1141
1142
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1143
1144
            for i, choice in enumerate(doc["choices"])
        ]
1145

baberabb's avatar
baberabb committed
1146
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1147
1148
1149
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1161
    def higher_is_better(self) -> dict:
1162
1163
1164
1165
1166
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1167
    def aggregation(self) -> dict:
1168
1169
1170
1171
1172
1173
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1174
class PerplexityTask(Task):
1175
1176
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1177
    def has_training_docs(self) -> bool:
1178
1179
        return False

baberabb's avatar
baberabb committed
1180
    def fewshot_examples(self, k: int, rnd) -> List:
1181
1182
1183
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1184
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1185
1186
1187
1188
1189
1190
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1191
    def higher_is_better(self) -> dict:
1192
1193
1194
1195
1196
1197
1198
1199
1200
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1201
    def doc_to_text(self, doc) -> str:
1202
1203
1204
1205
1206
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1207
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1208
1209
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1210
1211
1212
1213
1214
1215
1216
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1217

baberabb's avatar
baberabb committed
1218
    def process_results(self, doc: dict, results: float) -> dict:
1219
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1220
1221
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1222
1223
1224
1225
1226
1227
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1228
    def aggregation(self) -> dict:
1229
1230
1231
1232
1233
1234
1235
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1236
    def count_bytes(cls, doc) -> int:
1237
1238
1239
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1240
    def count_words(cls, doc) -> int:
1241
1242
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))