task.py 43.1 KB
Newer Older
1
import abc
2
import ast
3
import functools
Herbie Bradley's avatar
Herbie Bradley committed
4
5
6
7
8
9
import itertools
import random
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from typing import Any, List, Literal, Tuple, Union
10
11

import datasets
Herbie Bradley's avatar
Herbie Bradley committed
12
import evaluate
13
import numpy as np
Herbie Bradley's avatar
Herbie Bradley committed
14
15
16
import scipy.special as sp
import yaml
from tqdm import tqdm
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
lintangsutawika's avatar
lintangsutawika committed
20
from lm_eval.api.filter import FilterEnsemble
Herbie Bradley's avatar
Herbie Bradley committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
23
from lm_eval.api.metrics import (
    bits_per_byte,
Herbie Bradley's avatar
Herbie Bradley committed
24
    mean,
lintangsutawika's avatar
lintangsutawika committed
25
    metric_max_over_ground_truths,
Herbie Bradley's avatar
Herbie Bradley committed
26
    weighted_perplexity,
lintangsutawika's avatar
lintangsutawika committed
27
28
)
from lm_eval.api.registry import (
Herbie Bradley's avatar
Herbie Bradley committed
29
30
31
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
    get_aggregation,
    get_default_aggregation,
Herbie Bradley's avatar
Herbie Bradley committed
34
    get_metric,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
36
)
Herbie Bradley's avatar
Herbie Bradley committed
37
38
39
from lm_eval.filters import build_filter_ensemble
from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    process_docs: Callable = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
69
    doc_to_choice: Union[Callable, str, dict, list] = None
70
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    process_results: Union[Callable, str] = None
72
    use_prompt: str = None
73
    description: str = ""
74
75
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
76
    # runtime configuration options
77
    num_fewshot: int = 0
78
    # scoring options
79
80
    metric_list: str = None
    output_type: str = "greedy_until"
81
    generation_kwargs: dict = None
82
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
83
    filter_list: Union[str, list] = None
84
85
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
    def __post_init__(self):
Lintang Sutawika's avatar
Lintang Sutawika committed
90
91
92
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
93
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
94
                )
95
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
96
97
98
99
100
101
102

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
103
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
108
                    "until": None
109
110
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
111
112
113
                    "do_sample": False,
                    "temperature": 0.0,
                }
114

haileyschoelkopf's avatar
haileyschoelkopf committed
115
116
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

117
118
119
    def __getitem__(self, item):
        return getattr(self, item)

120
121
122
    def __setitem__(self, item, value):
        return setattr(self, item, value)

123
    def to_dict(self):
124
125
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
126
        Used for dumping results alongside full task configuration
127

haileyschoelkopf's avatar
haileyschoelkopf committed
128
129
130
131
132
133
134
135
136
137
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
141
        return cfg_dict
142

143
144
145
146
147
148
149
150
151
152
153
154

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
155

156
157
158
159
160
161
162
163
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
199
        self._config = TaskConfig(**config) if config else TaskConfig()
200
201
202

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
203
            for name, components in self._config.get(
204
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
205
            ):
206
207
208
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
209
        self.sampler = samplers.Sampler(
210
211
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
238
239
240
241
242
243
244
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

282
283
284
285
286
287
288
289
290
291
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
292
            eval_logger.warning(
293
                "has_training_docs and has_validation_docs are False"
294
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
295
            )
296
297
            return self.test_docs()

298
299
300
301
302
303
304
305
306
307
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

336
    def build_all_requests(self, limit=None, rank=None, world_size=None):
337
338
339
340
341
342
343
344
345
346
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

347
348
349
350
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

351
        instances = []
352
353
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
354
        ):
355
            # sample fewshot context #TODO: need to offset doc_id by rank now!
356
            fewshot_ctx = self.fewshot_context(
357
358
                doc,
                self._config.num_fewshot,
359
            )
360

haileyschoelkopf's avatar
haileyschoelkopf committed
361
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
362
363
364
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
365
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
366
            )
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
392
            The number of times each instance in a dataset is inferred on. Defaults to 1,
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
428
429
430
431
432
433
434
435
436
437
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

438
    @utils.positional_deprecated
439
    def fewshot_context(self, doc, num_fewshot):
440
441
442
443
444
445
446
447
448
449
450
451
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
452
453
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
454
        else:
lintangsutawika's avatar
lintangsutawika committed
455
456
457
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
458
459

        example = self.doc_to_text(doc)
460
461
462
463
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
464
        elif type(example) == int:
lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
469
            if self._config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
470
471

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
478

baberabb's avatar
baberabb committed
479
    def dump_config(self) -> dict:
480
        """Returns a dictionary representing the task's config.
481
482
483
484
485

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
486
        # (num_fewshot)
487
488
        return self._config.to_dict()

489
490

class ConfigurableTask(Task):
491
    VERSION = "Yaml"
492
    OUTPUT_TYPE = None
493
    CONFIG = None
494
495
496

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
baberabb's avatar
baberabb committed
497
    ):  # TODO no super() call here
498
        # Get pre-configured attributes
499
        self._config = self.CONFIG
500

501
502
        # Use new configurations if there was no preconfiguration
        if self._config is None:
503
            self._config = TaskConfig(**config)
504
505
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
506
            if config is not None:
507
                self._config.__dict__.update(config)
508

509
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
510
511
512
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
513
514

        if self._config.output_type is not None:
515
            assert self._config.output_type in ALL_OUTPUT_TYPES
516
517
            self.OUTPUT_TYPE = self._config.output_type

518
519
520
521
522
523
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

524
525
526
527
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
528

529
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
530
        if self._config.metric_list is None:
531
            # TODO: handle this in TaskConfig.__post_init__ ?
532
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
535
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
536
537
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
538
539
540
541
542
543
544
545
546
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
547

548
                if self._config.process_results is not None:
549
550
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
551
552
553
554
555
556
557
558
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
559

560
                if "aggregation" in metric_config:
561
                    agg_name = metric_config["aggregation"]
562
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
563
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
564
565
566
567
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
568
                else:
569
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
570
                    metric_agg = get_default_aggregation(metric_name)
571
                    eval_logger.warning(
572
573
574
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
575
                    )
576
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
577

578
579
580
581
582
583
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
584
585
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                        f"higher_is_better={is_higher_better(metric_name)}"
587
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
588
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
589

590
        self.download(self._config.dataset_kwargs)
591
592
593
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
594
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
595
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
596
597
598
599
600
601
602
603
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
604
605
606
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
607
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
608
        else:
609
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
610
611

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
612
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
613
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
614
615
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
616
617
618
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
619
620
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
621
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
622
            )
623

624
625
626
627
628
629
630
631
632
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

633
        # Test One Doc
634
635
636
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
637
638
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
639
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
640
641
642
643
644

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
645
646
            else:
                num_choice = len(test_choice)
647

648
649
            if type(test_text) is int:
                self.multiple_input = num_choice
650

651
        if type(test_target) is list:
652
653
            self.multiple_target = len(test_target)

Herbie Bradley's avatar
Herbie Bradley committed
654
        self.calibrations: list = []
655

Herbie Bradley's avatar
Herbie Bradley committed
656
    def download(self, dataset_kwargs=None):
657
658
659
660
661
662
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
663
    def has_training_docs(self) -> bool:
664
665
666
667
668
        if self._config.training_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
669
    def has_validation_docs(self) -> bool:
670
671
672
673
674
        if self._config.validation_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
675
    def has_test_docs(self) -> bool:
676
677
678
679
680
        if self._config.test_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
681
    def training_docs(self) -> datasets.Dataset:
682
        if self.has_training_docs():
683
            if self._config.process_docs is not None:
684
685
686
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
687
688
            return self.dataset[self._config.training_split]

baberabb's avatar
baberabb committed
689
    def validation_docs(self) -> datasets.Dataset:
690
        if self.has_validation_docs():
691
            if self._config.process_docs is not None:
692
693
694
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
695
696
            return self.dataset[self._config.validation_split]

baberabb's avatar
baberabb committed
697
    def test_docs(self) -> datasets.Dataset:
698
        if self.has_test_docs():
699
            if self._config.process_docs is not None:
700
                return self._config.process_docs(self.dataset[self._config.test_split])
701
702
            return self.dataset[self._config.test_split]

703
    def fewshot_docs(self):
704
        if self._config.fewshot_split is not None:
705
            return self.dataset[self._config.fewshot_split]
706
707
708
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
709
                    f"Task '{self._config.task}': "
710
711
712
713
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
714

715
716
717
718
719
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
720
721
722
723
724
725
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
726

727
728
729
730
731
732
733
734
735
736
737
738
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
739
740
        if self.prompt is not None:
            doc_to_text = self.prompt
741
742
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
743

744
745
746
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
747
            if doc_to_text in self.features:
748
749
750
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
751
752
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
753
754
755
756
757
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
758
        elif callable(doc_to_text):
759
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
760
        # Used when applying a Promptsource template
761
        elif hasattr(doc_to_text, "apply"):
762
763
764
765
766
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
767
                return self._config.fewshot_delimiter
768
        else:
769
            print(type(doc_to_text))
770
            raise TypeError
771

772
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
773
774
        if self.prompt is not None:
            doc_to_target = self.prompt
775
776
777
        else:
            doc_to_target = self._config.doc_to_target

778
779
780
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
781
            if doc_to_target in self.features:
782
783
784
785
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
786
            else:
lintangsutawika's avatar
lintangsutawika committed
787
788
789
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
790
791
792
793
794
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
795
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
796
797
                else:
                    return target_string
798
799
        elif type(doc_to_target) == list:
            return doc_to_target
800
        elif callable(doc_to_target):
801
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
802
        # Used when applying a Promptsource template
803
        elif hasattr(doc_to_target, "apply"):
804
            applied_prompt = doc_to_target.apply(doc)
805
806
807
808
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
809
                return self._config.fewshot_delimiter
810
811
        else:
            raise TypeError
812

baberabb's avatar
baberabb committed
813
    def doc_to_choice(self, doc: Any) -> List[str]:
814
815
        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
816
        elif self._config.doc_to_choice is None:
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice
        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
832

833
    def gold_alias(self, doc):
834
835
836
837
838
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
839
        if self._config.gold_alias is not None:
840
841
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
842
            return self.doc_to_target(doc)
843
844
845
846
847
848
849
850
851
852

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
853
854
855
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
856
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
857
            arguments = (ctx, self.doc_to_target(doc))
858
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
859
            arguments = (self.doc_to_target(doc),)
860
        elif self.OUTPUT_TYPE == "multiple_choice":
861
            choices = self.doc_to_choice(doc)
862
            target_delimiter = self._config.target_delimiter
863
864
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
865
                cont = self.doc_to_target(doc)
866
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
867
            else:
868
                # Otherwise they are placed in the continuation
869
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
870

871
            request_list = [
872
873
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
874
                    doc=doc,
875
                    arguments=arg,
876
                    idx=i,
877
878
                    **kwargs,
                )
879
                for i, arg in enumerate(arguments)
880
            ]
881
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
882
            if "acc_mutual_info" in self._metric_fn_list.keys():
883
884
885
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
886
                # here mutual info refers to calculating
887
888
889
890
891
892
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
893
                            doc=doc,
894
                            arguments=("", "{}".format(choice)),
895
896
897
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
898
                        for i, choice in enumerate(choices)
899
900
901
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
902

903
        elif self.OUTPUT_TYPE == "greedy_until":
904
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
905
906

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
907
908
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
909
910

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
911
912
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
913

914
        result_dict = {}
915
        use_metric = list(self._metric_fn_list.keys())
916
917
918
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
919
920
921
922
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
923
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
924
            (loglikelihood,) = results
925
926
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
927
            return {
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
943
            }
944
        elif self.OUTPUT_TYPE == "multiple_choice":
945
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
946

947
            # retrieve choices in List[str] form, to compute choice lengths, etc.
948
            choices = self.doc_to_choice(doc)
949
950
            completion_len = np.array([float(len(i)) for i in choices])

951
952
            if (
                2 * len(choices) == len(lls)
953
                and "acc_mutual_info" in self._metric_fn_list.keys()
954
955
956
957
958
959
960
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
961

962
963
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
964

965
966
            if self.multiple_input:
                gold = self.doc_to_text(doc)
967
            else:
968
                gold = self.doc_to_target(doc)
969
970
                if type(gold) is str:
                    gold = choices.index(gold)
Herbie Bradley's avatar
Herbie Bradley committed
971
972
973
            # Convert lls from log-probabilities to normalized probabilities
            norm_probs = np.exp(lls - sp.logsumexp(lls))
            print(norm_probs)
974
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
975
976
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
977
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
978
979
            else:
                acc = 1.0 if pred == gold else 0.0
Herbie Bradley's avatar
Herbie Bradley committed
980
981
982
                for i, choice in enumerate(choices):
                    calib_score = 1.0 if i == gold else 0.0
                    self.calibrations.append((norm_probs[i], calib_score))
lintangsutawika's avatar
lintangsutawika committed
983
                acc_norm = 1.0 if pred_norm == gold else 0.0
984
985
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
986
987

            result_dict = {
988
                **({"acc": acc} if "acc" in use_metric else {}),
989
990
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
991
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
992
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
993
994
            }

995
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
996
997
998
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
999
1000
1001
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1002
        elif self.OUTPUT_TYPE == "greedy_until":
1003
            gold = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1004
            if self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1005
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1006
                # it assumes that doc_to_target returns a number.
1007
1008
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1009
1010
            else:
                gold = str(gold)
1011

1012
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
1029
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1030
                    else:
1031
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1032
                else:
1033
                    result_score = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
1034
1035
1036
1037
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1038

1039
1040
                if isinstance(result_score, dict):
                    result_dict.update(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1041
                else:
1042
                    result_dict[key] = result_score
1043
        else:
lintangsutawika's avatar
lintangsutawika committed
1044
1045
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1046
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1047
            )
1048
1049
1050
1051
1052
1053
1054

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1055
        return self._higher_is_better
1056
1057
1058
1059
1060


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1061
    def doc_to_target(self, doc: dict) -> str:
1062
1063
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1064
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1065
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1066
1067
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1068
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1069
                doc=doc,
1070
                arguments=(ctx, " {}".format(choice)),
1071
                idx=i,
1072
1073
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1074
1075
            for i, choice in enumerate(doc["choices"])
        ]
1076

baberabb's avatar
baberabb committed
1077
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1078
1079
1080
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1092
    def higher_is_better(self) -> dict:
1093
1094
1095
1096
1097
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1098
    def aggregation(self) -> dict:
1099
1100
1101
1102
1103
1104
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1105
class PerplexityTask(Task):
1106
1107
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1108
    def has_training_docs(self) -> bool:
1109
1110
        return False

baberabb's avatar
baberabb committed
1111
    def fewshot_examples(self, k: int, rnd) -> List:
1112
1113
1114
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1115
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1116
1117
1118
1119
1120
1121
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1122
    def higher_is_better(self) -> dict:
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1138
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1139
1140
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1141
1142
1143
1144
1145
1146
1147
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1148

baberabb's avatar
baberabb committed
1149
    def process_results(self, doc: dict, results: float) -> dict:
1150
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1151
1152
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1153
1154
1155
1156
1157
1158
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1159
    def aggregation(self) -> dict:
1160
1161
1162
1163
1164
1165
1166
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1167
    def count_bytes(cls, doc) -> int:
1168
1169
1170
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1171
    def count_words(cls, doc) -> int:
1172
1173
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))