utils.py 20.1 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

baberabb's avatar
baberabb committed
13
from typing import Iterator, List, Literal, Union, Any, Callable
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
import logging
lintangsutawika's avatar
lintangsutawika committed
23

24
25
26
27
28
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
29
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
30

31
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
32

lintangsutawika's avatar
lintangsutawika committed
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
57
58
59
60
61
62
63
64
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
65
66
67
68
69
70
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
71
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
72
73
    if not args_string:
        return {}
74
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
75
76
77
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
78
    return args_dict
Leo Gao's avatar
Leo Gao committed
79

Fabrizio Milo's avatar
Fabrizio Milo committed
80

Leo Gao's avatar
Leo Gao committed
81
82
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
83
        yield from iter
Leo Gao's avatar
Leo Gao committed
84
85


Ethan Smith's avatar
Ethan Smith committed
86
def chunks(iter, n: int = 0, fn=None):
baberabb's avatar
baberabb committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
Leo Gao's avatar
Leo Gao committed
113
    arr = []
114
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
115
        arr.append(x)
116
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
117
118
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
119
120
121
122

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
123

124
125
126
127
128
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
129

130
131
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
132

gakada's avatar
gakada committed
133
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
134
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
135
136
137
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
138
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
139
        for value in values.split(","):
140
141
142
143
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
144
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
145
146
        return True

Ethan Smith's avatar
Ethan Smith committed
147
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
148
149
150
151
152
153
154
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
155
156
157
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
158
159
160
161
162
163
164
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
165
166
167
168
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
169
170
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
171
    string = re.sub(r" (['.,])", r"\1", string)
172
173
174
    return string


Jason Phang's avatar
Jason Phang committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
202
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
203
204
205
206
207
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
208

Jason Phang's avatar
Jason Phang committed
209
        yield (
lintangsutawika's avatar
lintangsutawika committed
210
211
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
212
213
214
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
215

Leo Gao's avatar
Leo Gao committed
216
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
217
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
218
    a, b = pair
219
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
220

Jason Phang's avatar
Jason Phang committed
221

222
class Reorderer:
baberabb's avatar
baberabb committed
223
224
225
226
227
228
229
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
230
231
232
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
233
234
235
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
236
237
238
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
239

240
    def get_reordered(self):
baberabb's avatar
baberabb committed
241
242
243
244
245
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
246
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
247

248
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
249
250
251
252
253
254
255
256
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
257
258
259
260
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
261
            for ind in inds:
262
263
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
264

265
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
266

267
268
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
269

haileyschoelkopf's avatar
haileyschoelkopf committed
270
271
272
273
274
275
276
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
277
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
328
def make_table(result_dict, column: str = "results"):
329
330
331
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
332
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
333
334
335
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
336

337
338
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
339
340
341
342
343
344
345
346
347
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
348
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
349
        column_name,
lintangsutawika's avatar
lintangsutawika committed
350
351
352
353
354
355
356
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
357
358
359

    values = []

lintangsutawika's avatar
lintangsutawika committed
360
    for k, dic in result_dict[column].items():
361
        version = result_dict["versions"][k]
362
363
364
365

        if "alias" in dic:
            k = dic.pop("alias")

366
367
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
368
369
370
            if m.endswith("_stderr"):
                continue

371
372
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
373
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
374
            else:
375
                values.append([k, version, f, m, "%.4f" % v, "", ""])
376
377
378
379
380
381
382
383
384
385
386
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


387
388
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
389
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
390
391
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
392

393
394
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
395
396
397
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
398
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
399
400
                "lm-evaluation-harness!"
            )
401
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
402

403
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
404

Fabrizio Milo's avatar
Fabrizio Milo committed
405

Stephen Hogg's avatar
Stephen Hogg committed
406
407
408
409
410
411
412
413
414
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
415
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
416
417
418
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
419
420
421
422
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
423
424

@positional_deprecated
425
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
426
427
428
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
429
430
    import pytest

431
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
432
433
434
435
436
437
438
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
439
440
441
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
442
443
444
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
445
446


447
448
449
450
451
452
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
453
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
454
        git_hash = git_hash.decode()
455
456
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
457
458
459
460
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
461
462
463
464
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
469
470
471
472
473
474
475
476

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
477

lintangsutawika's avatar
lintangsutawika committed
478
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
479
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
480
481


482
483
484
485
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
486

lintangsutawika's avatar
lintangsutawika committed
487
488
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
519
520


Ethan Smith's avatar
Ethan Smith committed
521
def regex_replace(string, pattern, repl, count: int = 0):
522
523
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
524

lintangsutawika's avatar
lintangsutawika committed
525

526
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
527
env.filters["regex_replace"] = regex_replace
528
529


baberabb's avatar
baberabb committed
530
def apply_template(template: str, doc: dict) -> str:
531
532
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
533
534


535
536
537
538
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
539
540
541
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
542
543


haileyschoelkopf's avatar
haileyschoelkopf committed
544
545
546
547
548
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
551
552
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
553
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
554
555
556
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
557

lintangsutawika's avatar
lintangsutawika committed
558
    for i, tensor in enumerate(tensors):
559
560
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
561
562
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
563
564
565
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
566
567
568
569
570
571
572
573
574
575
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
576
577
578
579
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
580
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                            max_length - tensor_len,
582
583
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
584
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
586
587
588
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
589
590
591
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
592
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
593
594


Ethan Smith's avatar
Ethan Smith committed
595
def clear_torch_cache() -> None:
596
597
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
598
599


lintangsutawika's avatar
lintangsutawika committed
600
601
602
603
604
605
606
607
608
609
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
610
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
611
612
613
614
615
616
617
618
619
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
620
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
621
622
623
624
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
625
626
627
628
629
630
631
632
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        self.sequence_id_len = len(self.sequence_ids) + 2
haileyschoelkopf's avatar
haileyschoelkopf committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )