utils.py 18 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
23
import logging
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
24
25


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
49
50
51
52
53
54
55
56
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
57
58
59
60
61
62
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
63
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
64
65
    if not args_string:
        return {}
66
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
67
68
69
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
70
    return args_dict
Leo Gao's avatar
Leo Gao committed
71

Fabrizio Milo's avatar
Fabrizio Milo committed
72

Leo Gao's avatar
Leo Gao committed
73
74
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
75
        yield from iter
Leo Gao's avatar
Leo Gao committed
76
77


Ethan Smith's avatar
Ethan Smith committed
78
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
79
    arr = []
80
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
81
        arr.append(x)
82
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
83
84
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
85
86
87
88

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
89

90
91
92
93
94
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
95

96
97
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
98

gakada's avatar
gakada committed
99
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
100
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
101
102
103
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
104
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
105
        for value in values.split(","):
106
107
108
109
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
110
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
111
112
        return True

Ethan Smith's avatar
Ethan Smith committed
113
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
114
115
116
117
118
119
120
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
121
122
123
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
124
125
126
127
128
129
130
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
131
132
133
134
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
135
136
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
137
    string = re.sub(r" (['.,])", r"\1", string)
138
139
140
    return string


Jason Phang's avatar
Jason Phang committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
168
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
169
170
171
172
173
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
174

Jason Phang's avatar
Jason Phang committed
175
        yield (
lintangsutawika's avatar
lintangsutawika committed
176
177
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
178
179
180
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
181

Leo Gao's avatar
Leo Gao committed
182
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
183
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
184
    a, b = pair
185
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
186

Jason Phang's avatar
Jason Phang committed
187

188
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
189
    def __init__(self, arr, fn) -> None:
190
191
192
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
193
194
195
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
196
197
198
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
199

200
201
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
202

203
204
205
206
207
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
208
            for ind in inds:
209
210
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
211

212
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
213

214
215
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
216

haileyschoelkopf's avatar
haileyschoelkopf committed
217
218
219
220
221
222
223
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
224
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
275
def make_table(result_dict, column: str = "results"):
276
277
278
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
279
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
280
281
282
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
283

284
285
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
286
287
288
289
290
291
292
293
294
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
295
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
296
        column_name,
lintangsutawika's avatar
lintangsutawika committed
297
298
299
300
301
302
303
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
304
305
306

    values = []

lintangsutawika's avatar
lintangsutawika committed
307
    for k, dic in result_dict[column].items():
308
        version = result_dict["versions"][k]
309
310
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
311
312
313
            if m.endswith("_stderr"):
                continue

314
315
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
316
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
317
            else:
318
                values.append([k, version, f, m, "%.4f" % v, "", ""])
319
320
321
322
323
324
325
326
327
328
329
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


330
331
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
332
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
333
334
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
335

336
337
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
338
339
340
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
341
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
342
343
                "lm-evaluation-harness!"
            )
344
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
345

346
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
347

Fabrizio Milo's avatar
Fabrizio Milo committed
348

Stephen Hogg's avatar
Stephen Hogg committed
349
350
351
352
353
354
355
356
357
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
358
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
359
360
361
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
362
363
364
365
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
366
367

@positional_deprecated
368
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
369
370
371
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
372
373
    import pytest

374
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
375
376
377
378
379
380
381
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
382
383
384
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
385
386
387
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
388
389


390
391
392
393
394
395
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
396
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
397
        git_hash = git_hash.decode()
398
399
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
400
401
402
403
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
404
405
406
407
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
408
409
410
411
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
412
413
414
415
416
417
418
419

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
420

lintangsutawika's avatar
lintangsutawika committed
421
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
422
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
423
424


425
426
427
428
429
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
430

lintangsutawika's avatar
lintangsutawika committed
431
432
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
464
465


Ethan Smith's avatar
Ethan Smith committed
466
def regex_replace(string, pattern, repl, count: int = 0):
467
468
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
469

lintangsutawika's avatar
lintangsutawika committed
470

471
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
472
env.filters["regex_replace"] = regex_replace
473
474


baberabb's avatar
baberabb committed
475
def apply_template(template: str, doc: dict) -> str:
476
477
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
478
479


480
481
482
483
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
484
485
486
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
487
488


haileyschoelkopf's avatar
haileyschoelkopf committed
489
490
491
492
493
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
494
495
496
497
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
498
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
499
500
501
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
502

lintangsutawika's avatar
lintangsutawika committed
503
    for i, tensor in enumerate(tensors):
504
505
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
506
507
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
508
509
510
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
511
512
513
514
515
516
517
518
519
520
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
521
522
523
524
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
525
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
526
                            max_length - tensor_len,
527
528
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
529
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
530
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
531
532
533
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
534
535
536
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
537
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
538
539


Ethan Smith's avatar
Ethan Smith committed
540
def clear_torch_cache() -> None:
541
542
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544


lintangsutawika's avatar
lintangsutawika committed
545
546
547
548
549
550
551
552
553
554
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
555
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
556
557
558
559
560
561
562
563
564
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
565
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )