utils.py 18 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
import logging
lintangsutawika's avatar
lintangsutawika committed
23

24
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
25
26


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
50
51
52
53
54
55
56
57
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
58
59
60
61
62
63
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
64
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
65
66
    if not args_string:
        return {}
67
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
68
69
70
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
71
    return args_dict
Leo Gao's avatar
Leo Gao committed
72

Fabrizio Milo's avatar
Fabrizio Milo committed
73

Leo Gao's avatar
Leo Gao committed
74
75
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
76
        yield from iter
Leo Gao's avatar
Leo Gao committed
77
78


Ethan Smith's avatar
Ethan Smith committed
79
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
80
    arr = []
81
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
82
        arr.append(x)
83
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
84
85
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
86
87
88
89

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
90

91
92
93
94
95
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
96

97
98
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
99

gakada's avatar
gakada committed
100
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
101
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
102
103
104
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
105
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
106
        for value in values.split(","):
107
108
109
110
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
111
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
112
113
        return True

Ethan Smith's avatar
Ethan Smith committed
114
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
115
116
117
118
119
120
121
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
122
123
124
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
125
126
127
128
129
130
131
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
132
133
134
135
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
136
137
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
138
    string = re.sub(r" (['.,])", r"\1", string)
139
140
141
    return string


Jason Phang's avatar
Jason Phang committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
169
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
170
171
172
173
174
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
175

Jason Phang's avatar
Jason Phang committed
176
        yield (
lintangsutawika's avatar
lintangsutawika committed
177
178
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
179
180
181
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
182

Leo Gao's avatar
Leo Gao committed
183
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
184
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
185
    a, b = pair
186
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
187

Jason Phang's avatar
Jason Phang committed
188

189
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
190
    def __init__(self, arr, fn) -> None:
191
192
193
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
194
195
196
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
197
198
199
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
200

201
202
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
203

204
205
206
207
208
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
209
            for ind in inds:
210
211
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
212

213
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
214

215
216
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
217

haileyschoelkopf's avatar
haileyschoelkopf committed
218
219
220
221
222
223
224
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
225
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
276
def make_table(result_dict, column: str = "results"):
277
278
279
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
280
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
281
282
283
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
284

285
286
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
287
288
289
290
291
292
293
294
295
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
296
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
297
        column_name,
lintangsutawika's avatar
lintangsutawika committed
298
299
300
301
302
303
304
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
305
306
307

    values = []

lintangsutawika's avatar
lintangsutawika committed
308
    for k, dic in result_dict[column].items():
309
        version = result_dict["versions"][k]
310
311
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
312
313
314
            if m.endswith("_stderr"):
                continue

315
316
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
317
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
318
            else:
319
                values.append([k, version, f, m, "%.4f" % v, "", ""])
320
321
322
323
324
325
326
327
328
329
330
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


331
332
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
333
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
334
335
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
336

337
338
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
339
340
341
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
342
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
343
344
                "lm-evaluation-harness!"
            )
345
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
346

347
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
348

Fabrizio Milo's avatar
Fabrizio Milo committed
349

Stephen Hogg's avatar
Stephen Hogg committed
350
351
352
353
354
355
356
357
358
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
359
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
360
361
362
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
363
364
365
366
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
367
368

@positional_deprecated
369
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
370
371
372
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
373
374
    import pytest

375
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
376
377
378
379
380
381
382
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
383
384
385
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
386
387
388
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
389
390


391
392
393
394
395
396
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
397
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
398
        git_hash = git_hash.decode()
399
400
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
401
402
403
404
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
405
406
407
408
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
409
410
411
412
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
413
414
415
416
417
418
419
420

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
421

lintangsutawika's avatar
lintangsutawika committed
422
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
423
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
424
425


426
427
428
429
430
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
431

lintangsutawika's avatar
lintangsutawika committed
432
433
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
465
466


Ethan Smith's avatar
Ethan Smith committed
467
def regex_replace(string, pattern, repl, count: int = 0):
468
469
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
470

lintangsutawika's avatar
lintangsutawika committed
471

472
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
473
env.filters["regex_replace"] = regex_replace
474
475


baberabb's avatar
baberabb committed
476
def apply_template(template: str, doc: dict) -> str:
477
478
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
479
480


481
482
483
484
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
485
486
487
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
488
489


haileyschoelkopf's avatar
haileyschoelkopf committed
490
491
492
493
494
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
495
496
497
498
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
499
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
500
501
502
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
503

lintangsutawika's avatar
lintangsutawika committed
504
    for i, tensor in enumerate(tensors):
505
506
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
507
508
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
509
510
511
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
512
513
514
515
516
517
518
519
520
521
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
522
523
524
525
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
526
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
527
                            max_length - tensor_len,
528
529
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
530
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
531
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
534
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
535
536
537
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
538
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
539
540


Ethan Smith's avatar
Ethan Smith committed
541
def clear_torch_cache() -> None:
542
543
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
544
545


lintangsutawika's avatar
lintangsutawika committed
546
547
548
549
550
551
552
553
554
555
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
556
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
557
558
559
560
561
562
563
564
565
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
566
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )