utils.py 18.3 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
import logging
lintangsutawika's avatar
lintangsutawika committed
23

24
25
26
27
28
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
29
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
30

31
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
56
57
58
59
60
61
62
63
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
64
65
66
67
68
69
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
70
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
71
72
    if not args_string:
        return {}
73
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
74
75
76
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
77
    return args_dict
Leo Gao's avatar
Leo Gao committed
78

Fabrizio Milo's avatar
Fabrizio Milo committed
79

Leo Gao's avatar
Leo Gao committed
80
81
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
82
        yield from iter
Leo Gao's avatar
Leo Gao committed
83
84


Ethan Smith's avatar
Ethan Smith committed
85
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
86
    arr = []
87
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
88
        arr.append(x)
89
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
90
91
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
92
93
94
95

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
96

97
98
99
100
101
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
102

103
104
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
105

gakada's avatar
gakada committed
106
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
107
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
108
109
110
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
111
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
112
        for value in values.split(","):
113
114
115
116
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
117
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
118
119
        return True

Ethan Smith's avatar
Ethan Smith committed
120
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
121
122
123
124
125
126
127
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
128
129
130
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
131
132
133
134
135
136
137
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
138
139
140
141
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
142
143
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
144
    string = re.sub(r" (['.,])", r"\1", string)
145
146
147
    return string


Jason Phang's avatar
Jason Phang committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
175
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
176
177
178
179
180
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
181

Jason Phang's avatar
Jason Phang committed
182
        yield (
lintangsutawika's avatar
lintangsutawika committed
183
184
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
185
186
187
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
188

Leo Gao's avatar
Leo Gao committed
189
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
190
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
191
    a, b = pair
192
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
193

Jason Phang's avatar
Jason Phang committed
194

195
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
196
    def __init__(self, arr, fn) -> None:
197
198
199
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
200
201
202
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
203
204
205
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
206

207
208
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
209

210
211
212
213
214
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
215
            for ind in inds:
216
217
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
218

219
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
220

221
222
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
223

haileyschoelkopf's avatar
haileyschoelkopf committed
224
225
226
227
228
229
230
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
231
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
282
def make_table(result_dict, column: str = "results"):
283
284
285
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
286
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
287
288
289
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
290

291
292
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
293
294
295
296
297
298
299
300
301
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
302
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
303
        column_name,
lintangsutawika's avatar
lintangsutawika committed
304
305
306
307
308
309
310
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
311
312
313

    values = []

lintangsutawika's avatar
lintangsutawika committed
314
    for k, dic in result_dict[column].items():
315
        version = result_dict["versions"][k]
316
317
318
319

        if "alias" in dic:
            k = dic.pop("alias")

320
321
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
322
323
324
            if m.endswith("_stderr"):
                continue

325
326
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
327
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
328
            else:
329
                values.append([k, version, f, m, "%.4f" % v, "", ""])
330
331
332
333
334
335
336
337
338
339
340
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


341
342
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
343
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
344
345
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
346

347
348
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
349
350
351
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
352
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
353
354
                "lm-evaluation-harness!"
            )
355
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
356

357
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
358

Fabrizio Milo's avatar
Fabrizio Milo committed
359

Stephen Hogg's avatar
Stephen Hogg committed
360
361
362
363
364
365
366
367
368
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
369
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
370
371
372
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
373
374
375
376
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
377
378

@positional_deprecated
379
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
380
381
382
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
383
384
    import pytest

385
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
386
387
388
389
390
391
392
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
393
394
395
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
396
397
398
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
399
400


401
402
403
404
405
406
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
407
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
408
        git_hash = git_hash.decode()
409
410
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
411
412
413
414
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
415
416
417
418
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
419
420
421
422
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
423
424
425
426
427
428
429
430

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
431

lintangsutawika's avatar
lintangsutawika committed
432
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
433
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
434
435


436
437
438
439
440
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
441

lintangsutawika's avatar
lintangsutawika committed
442
443
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
475
476


Ethan Smith's avatar
Ethan Smith committed
477
def regex_replace(string, pattern, repl, count: int = 0):
478
479
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
480

lintangsutawika's avatar
lintangsutawika committed
481

482
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
483
env.filters["regex_replace"] = regex_replace
484
485


baberabb's avatar
baberabb committed
486
def apply_template(template: str, doc: dict) -> str:
487
488
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
489
490


491
492
493
494
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
495
496
497
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
498
499


haileyschoelkopf's avatar
haileyschoelkopf committed
500
501
502
503
504
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
505
506
507
508
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
509
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
510
511
512
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
513

lintangsutawika's avatar
lintangsutawika committed
514
    for i, tensor in enumerate(tensors):
515
516
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
517
518
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
519
520
521
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
522
523
524
525
526
527
528
529
530
531
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
534
535
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
536
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
537
                            max_length - tensor_len,
538
539
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
540
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
541
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
542
543
544
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
545
546
547
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
548
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550


Ethan Smith's avatar
Ethan Smith committed
551
def clear_torch_cache() -> None:
552
553
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
554
555


lintangsutawika's avatar
lintangsutawika committed
556
557
558
559
560
561
562
563
564
565
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
566
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
567
568
569
570
571
572
573
574
575
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
576
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )