utils.py 9.56 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
11

Stephen Hogg's avatar
Stephen Hogg committed
12
from typing import List
sdtblck's avatar
sdtblck committed
13

Xingjian Shi's avatar
Xingjian Shi committed
14
from omegaconf import OmegaConf
15
from jinja2 import BaseLoader, Environment, StrictUndefined
16
from itertools import islice
sdtblck's avatar
sdtblck committed
17
18
19
20
21
22
23
24
25
26
27


class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


Jason Phang's avatar
gpt3  
Jason Phang committed
28
29
30
31
32
33
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
34
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
35
36
37
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
38
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
39
    return args_dict
Leo Gao's avatar
Leo Gao committed
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

Leo Gao's avatar
Leo Gao committed
42
43
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
44
        yield from iter
Leo Gao's avatar
Leo Gao committed
45
46
47
48
49
50
51
52
53


def chunks(iter, n):
    arr = []
    for x in iter:
        arr.append(x)
        if len(arr) == n:
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
54
55
56
57

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
58

59
60
61
62
63
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
64

65
66
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
67

Leo Gao's avatar
Leo Gao committed
68
69
70
71
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
72
73
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
74
    string = re.sub(r" (['.,])", r"\1", string)
75
76
77
    return string


Jason Phang's avatar
Jason Phang committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
105
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
106
107
108
109
110
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
111

Jason Phang's avatar
Jason Phang committed
112
        yield (
Fabrizio Milo's avatar
Fabrizio Milo committed
113
114
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
115
116
117
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
118

Leo Gao's avatar
Leo Gao committed
119
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
120
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
121
    a, b = pair
122
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
123

Jason Phang's avatar
Jason Phang committed
124

125
126
127
128
129
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
130
131
132
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
133
134
135
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
136

137
138
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
139

140
141
142
143
144
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
145
            for ind in inds:
146
147
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
148

149
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
150

151
152
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
153

154
155
156
157
158
159
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
160
161
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
162
163
164
165
166

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
167
168
169
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
            print(m,f)
170
171
172
            if m.endswith("_stderr"):
                continue

173
174
175
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
176
            else:
177
                values.append([k, version, f, m, "%.4f" % v, "", ""])
178
179
180
181
182
183
184
185
186
187
188
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


189
190
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
191
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
192
193
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
194

195
196
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
197
198
199
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
200
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
201
202
                "lm-evaluation-harness!"
            )
203
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
204

205
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
206

Fabrizio Milo's avatar
Fabrizio Milo committed
207

Stephen Hogg's avatar
Stephen Hogg committed
208
209
210
211
212
213
214
215
216
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
217
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
218
219
220
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
221
222
223
224
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
225
226

@positional_deprecated
227
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
228
229
230
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
231
232
    import pytest

233
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
234
235
236
237
238
239
240
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
241
242
243
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
244
245
246
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
247
248


249
250
251
252
253
254
255
256
257
258
259
260
261
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except subprocess.CalledProcessError:
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
262
263
264
265
266
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
267
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
268
269
270
271
272
273
274
275
276
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
277

lintangsutawika's avatar
lintangsutawika committed
278
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
279
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
280
281
282


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
283
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
284
285
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
286
287
288
289

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
290
291
292

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
293

lintangsutawika's avatar
lintangsutawika committed
294
295
296
297
298
299
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
300
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
301
302
303
304
305
306
307
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
308
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
309
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
310
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
311
312
313
314
315
316

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


317
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
318
319
320
321
322


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
323
324


325
326
327
328
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
329
330
331
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)