utils.py 8.01 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Stephen Hogg's avatar
Stephen Hogg committed
2
import pathlib
Leo Gao's avatar
Leo Gao committed
3
import re
4
import collections
5
import functools
Leo Gao's avatar
Leo Gao committed
6
import inspect
Stephen Hogg's avatar
Stephen Hogg committed
7
import sys
gakada's avatar
gakada committed
8
import fnmatch
9
10
11
from typing import List, Union

import torch
sdtblck's avatar
sdtblck committed
12

Xingjian Shi's avatar
Xingjian Shi committed
13
from omegaconf import OmegaConf
sdtblck's avatar
sdtblck committed
14
15
16
17
18
19
20
21
22
23
24


class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
48
49
50
51
52
53
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
54
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
55
56
57
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
58
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
59
    return args_dict
Leo Gao's avatar
Leo Gao committed
60

Fabrizio Milo's avatar
Fabrizio Milo committed
61

Leo Gao's avatar
Leo Gao committed
62
63
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
64
        yield from iter
Leo Gao's avatar
Leo Gao committed
65
66
67
68
69
70
71
72
73


def chunks(iter, n):
    arr = []
    for x in iter:
        arr.append(x)
        if len(arr) == n:
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
77

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
78

79
80
81
82
83
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
84

85
86
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
87

gakada's avatar
gakada committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def _is_json_task(task_name):
    return task_name == "json" or task_name.startswith("json=")


class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
            if len(fnmatch.filter(self.choices, value)) == 0 and not _is_json_task(
                value
            ):
                return False

        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        if _is_json_task(pattern):
            task_names.add(pattern)

        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
124
125
126
127
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
128
129
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
130
    string = re.sub(r" (['.,])", r"\1", string)
131
132
133
    return string


Jason Phang's avatar
Jason Phang committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
161
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
162
163
164
165
166
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
167

Jason Phang's avatar
Jason Phang committed
168
        yield (
Fabrizio Milo's avatar
Fabrizio Milo committed
169
170
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
171
172
173
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
174

Leo Gao's avatar
Leo Gao committed
175
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
176
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
177
    a, b = pair
178
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
179

Jason Phang's avatar
Jason Phang committed
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


201
202
203
204
205
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
Fabrizio Milo's avatar
Fabrizio Milo committed
206
        arr = [([y[0] for y in x], x[0][1]) for x in arr]
207
208
209
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
210

211
212
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
213

214
215
216
217
218
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
219
            for ind in inds:
220
221
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
222

223
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
224

225
226
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
227

228
229
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
230
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
231
232
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
233

234
235
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
236
237
238
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
239
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
240
241
                "lm-evaluation-harness!"
            )
242
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
243

244
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
245

Fabrizio Milo's avatar
Fabrizio Milo committed
246

Stephen Hogg's avatar
Stephen Hogg committed
247
248
249
250
251
252
253
254
255
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
256
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
257
258
259
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
260
261
262
263
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
264
265

@positional_deprecated
266
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
267
268
269
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
270
271
    import pytest

272
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
273
274
275
276
277
278
279
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
280
281
282
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
283
284
285
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )