utils.py 18.3 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
import logging
lintangsutawika's avatar
lintangsutawika committed
23

24
25
26
27
28
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
29
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
30

31
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
32

lintangsutawika's avatar
lintangsutawika committed
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
57
58
59
60
61
62
63
64
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
65
66
67
68
69
70
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
71
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
72
73
    if not args_string:
        return {}
74
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
75
76
77
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
78
    return args_dict
Leo Gao's avatar
Leo Gao committed
79

Fabrizio Milo's avatar
Fabrizio Milo committed
80

Leo Gao's avatar
Leo Gao committed
81
82
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
83
        yield from iter
Leo Gao's avatar
Leo Gao committed
84
85


Ethan Smith's avatar
Ethan Smith committed
86
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
87
    arr = []
88
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
89
        arr.append(x)
90
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
91
92
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
95
96

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
97

98
99
100
101
102
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
103

104
105
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
106

gakada's avatar
gakada committed
107
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
108
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
109
110
111
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
112
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
113
        for value in values.split(","):
114
115
116
117
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
118
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
119
120
        return True

Ethan Smith's avatar
Ethan Smith committed
121
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
122
123
124
125
126
127
128
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
129
130
131
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
132
133
134
135
136
137
138
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
139
140
141
142
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
143
144
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
145
    string = re.sub(r" (['.,])", r"\1", string)
146
147
148
    return string


Jason Phang's avatar
Jason Phang committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
176
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
177
178
179
180
181
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
182

Jason Phang's avatar
Jason Phang committed
183
        yield (
lintangsutawika's avatar
lintangsutawika committed
184
185
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
186
187
188
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
189

Leo Gao's avatar
Leo Gao committed
190
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
191
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
192
    a, b = pair
193
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
194

Jason Phang's avatar
Jason Phang committed
195

196
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
197
    def __init__(self, arr, fn) -> None:
198
199
200
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
201
202
203
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
204
205
206
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
207

208
209
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
210

211
212
213
214
215
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
216
            for ind in inds:
217
218
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
219

220
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
221

222
223
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
224

haileyschoelkopf's avatar
haileyschoelkopf committed
225
226
227
228
229
230
231
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
232
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
283
def make_table(result_dict, column: str = "results"):
284
285
286
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
287
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
288
289
290
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
291

292
293
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
294
295
296
297
298
299
300
301
302
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
303
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
304
        column_name,
lintangsutawika's avatar
lintangsutawika committed
305
306
307
308
309
310
311
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
312
313
314

    values = []

lintangsutawika's avatar
lintangsutawika committed
315
    for k, dic in result_dict[column].items():
316
        version = result_dict["versions"][k]
317
318
319
320

        if "alias" in dic:
            k = dic.pop("alias")

321
322
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
323
324
325
            if m.endswith("_stderr"):
                continue

326
327
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
328
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
329
            else:
330
                values.append([k, version, f, m, "%.4f" % v, "", ""])
331
332
333
334
335
336
337
338
339
340
341
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


342
343
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
344
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
345
346
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
347

348
349
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
350
351
352
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
353
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
354
355
                "lm-evaluation-harness!"
            )
356
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
357

358
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
359

Fabrizio Milo's avatar
Fabrizio Milo committed
360

Stephen Hogg's avatar
Stephen Hogg committed
361
362
363
364
365
366
367
368
369
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
370
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
371
372
373
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
374
375
376
377
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
378
379

@positional_deprecated
380
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
381
382
383
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
384
385
    import pytest

386
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
387
388
389
390
391
392
393
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
394
395
396
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
397
398
399
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
400
401


402
403
404
405
406
407
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
408
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
409
        git_hash = git_hash.decode()
410
411
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
412
413
414
415
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
416
417
418
419
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
420
421
422
423
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
424
425
426
427
428
429
430
431

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
432

lintangsutawika's avatar
lintangsutawika committed
433
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
434
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
435
436


437
438
439
440
441
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
442

lintangsutawika's avatar
lintangsutawika committed
443
444
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
476
477


Ethan Smith's avatar
Ethan Smith committed
478
def regex_replace(string, pattern, repl, count: int = 0):
479
480
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
481

lintangsutawika's avatar
lintangsutawika committed
482

483
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
484
env.filters["regex_replace"] = regex_replace
485
486


baberabb's avatar
baberabb committed
487
def apply_template(template: str, doc: dict) -> str:
488
489
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
490
491


492
493
494
495
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
496
497
498
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
499
500


haileyschoelkopf's avatar
haileyschoelkopf committed
501
502
503
504
505
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
506
507
508
509
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
510
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
511
512
513
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
514

lintangsutawika's avatar
lintangsutawika committed
515
    for i, tensor in enumerate(tensors):
516
517
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
518
519
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
520
521
522
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
523
524
525
526
527
528
529
530
531
532
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
535
536
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
537
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
538
                            max_length - tensor_len,
539
540
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
541
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
542
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544
545
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
546
547
548
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
549
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
550
551


Ethan Smith's avatar
Ethan Smith committed
552
def clear_torch_cache() -> None:
553
554
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
555
556


lintangsutawika's avatar
lintangsutawika committed
557
558
559
560
561
562
563
564
565
566
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
567
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
568
569
570
571
572
573
574
575
576
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
577
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )