task.py 45.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
82
    metric_list: str = None
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

91
    def __post_init__(self):
92

lintangsutawika's avatar
lintangsutawika committed
93
94
95
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
96

lintangsutawika's avatar
lintangsutawika committed
97
98
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))

Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
102
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                )
104
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
115
116
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
117
                    "until": None
118
119
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
120
121
122
                    "do_sample": False,
                    "temperature": 0.0,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
208
        self._config = TaskConfig(**config) if config else TaskConfig()
209
210
211

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
212
            for name, components in self._config.get(
213
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
214
            ):
215
216
217
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
218
        self.sampler = samplers.Sampler(
219
220
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
247
248
249
250
251
252
253
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

291
292
293
294
295
296
297
298
299
300
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
301
            eval_logger.warning(
302
                "has_training_docs and has_validation_docs are False"
303
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
304
            )
305
306
            return self.test_docs()

307
308
309
310
311
312
313
314
315
316
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

345
    def build_all_requests(self, limit=None, rank=None, world_size=None):
346
347
348
349
350
351
352
353
354
355
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

356
357
358
359
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

360
        instances = []
361
362
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
363
        ):
364
            # sample fewshot context #TODO: need to offset doc_id by rank now!
365
            fewshot_ctx = self.fewshot_context(
366
367
                doc,
                self._config.num_fewshot,
368
            )
369

haileyschoelkopf's avatar
haileyschoelkopf committed
370
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
371
372
373
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
374
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
375
            )
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
401
            The number of times each instance in a dataset is inferred on. Defaults to 1,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
437
438
439
440
441
442
443
444
445
446
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

447
    @utils.positional_deprecated
448
    def fewshot_context(self, doc, num_fewshot):
449
450
451
452
453
454
455
456
457
458
459
460
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
461
462
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
463
        else:
lintangsutawika's avatar
lintangsutawika committed
464
465
466
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
467
468

        example = self.doc_to_text(doc)
469
470
471
472
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
473
        elif type(example) == int:
lintangsutawika's avatar
lintangsutawika committed
474
475
476
477
478
            if self._config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
479
480
481

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
482
483
484
485
486
487
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
488

baberabb's avatar
baberabb committed
489
    def dump_config(self) -> dict:
490
        """Returns a dictionary representing the task's config.
491
492
493
494
495

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
496
        # (num_fewshot)
497
498
        return self._config.to_dict()

499
500

class ConfigurableTask(Task):
501
    VERSION = "Yaml"
502
    OUTPUT_TYPE = None
503
    CONFIG = None
504
505
506

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
baberabb's avatar
baberabb committed
507
    ):  # TODO no super() call here
508
        # Get pre-configured attributes
509
        self._config = self.CONFIG
510

511
512
        # Use new configurations if there was no preconfiguration
        if self._config is None:
513
            self._config = TaskConfig(**config)
514
515
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
516
            if config is not None:
517
                self._config.__dict__.update(config)
518

519
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
520
521
522
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
523
524

        if self._config.output_type is not None:
525
            assert self._config.output_type in ALL_OUTPUT_TYPES
526
527
            self.OUTPUT_TYPE = self._config.output_type

528
529
530
531
532
533
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

534
535
536
537
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
538

539
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
540
        if self._config.metric_list is None:
541
            # TODO: handle this in TaskConfig.__post_init__ ?
542
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
545
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
548
549
550
551
552
553
554
555
556
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
557

558
                if self._config.process_results is not None:
559
560
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
561
562
563
564
565
566
567
568
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
569

570
                if "aggregation" in metric_config:
571
                    agg_name = metric_config["aggregation"]
572
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
573
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
574
575
576
577
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
578
                else:
579
580

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                    metric_agg = get_default_aggregation(metric_name)
582
                    eval_logger.warning(
583
584
585
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
586
                    )
587
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
588

589
590
591
592
593
594
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
595
596
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                        f"higher_is_better={is_higher_better(metric_name)}"
598
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
599
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
600

601
        self.download(self._config.dataset_kwargs)
602
603
604
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
605
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
606
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
607
608
609
610
611
612
613
614
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
615
616
617
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
618
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
619
        else:
620
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
621
622

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
623
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
624
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
625
626
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
627
628
629
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
630
631
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
632
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
633
            )
634

635
        if self.has_test_docs():
636
            self.task_docs = self.test_docs()
637
        elif self.has_validation_docs():
638
            self.task_docs = self.validation_docs()
639
640
641
642
643
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

644
        # Test One Doc
645
        self.features = list(self.task_docs.features.keys())
646
647
        self.multiple_input = 0
        self.multiple_target = 0
648
        test_doc = self.task_docs[0]
649
        test_text = self.doc_to_text(test_doc)
650
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
651
652
653
654
655

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
656
657
            else:
                num_choice = len(test_choice)
658

659
660
            if type(test_text) is int:
                self.multiple_input = num_choice
lintangsutawika's avatar
lintangsutawika committed
661
662
        else:
            test_choice = None
663

664
        if type(test_target) is list:
665
            self.multiple_target = len(test_target)
lintangsutawika's avatar
lintangsutawika committed
666
667
668
669
670
        else:
            if (type(test_target) is int) and (test_choice is not None):
                test_target = test_choice[test_target]
            else:
                test_target = str(test_target)
671

lintangsutawika's avatar
lintangsutawika committed
672
673
674
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
675
            check_choices = [test_target]
lintangsutawika's avatar
lintangsutawika committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

        for choice in check_choices:
            choice_has_whitespace = True if " " in choice else False
            delimiter_has_whitespace = (
                True if " " in self._config.target_delimiter else False
            )

            if delimiter_has_whitespace and choice_has_whitespace:
                eval_logger.warning(
                    f'Both target_delimiter and target choice: "{choice}" have whitespace'
                )
            elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                eval_logger.warning(
                    f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                )

692
693
694
695
696
697
698
699
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
700
    def has_training_docs(self) -> bool:
701
702
703
704
705
        if self._config.training_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
706
    def has_validation_docs(self) -> bool:
707
708
709
710
711
        if self._config.validation_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
712
    def has_test_docs(self) -> bool:
713
714
715
716
717
        if self._config.test_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
718
    def training_docs(self) -> datasets.Dataset:
719
        if self.has_training_docs():
720
            if self._config.process_docs is not None:
721
722
723
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
724
725
            return self.dataset[self._config.training_split]

baberabb's avatar
baberabb committed
726
    def validation_docs(self) -> datasets.Dataset:
727
        if self.has_validation_docs():
728
            if self._config.process_docs is not None:
729
730
731
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
732
733
            return self.dataset[self._config.validation_split]

baberabb's avatar
baberabb committed
734
    def test_docs(self) -> datasets.Dataset:
735
        if self.has_test_docs():
736
            if self._config.process_docs is not None:
737
                return self._config.process_docs(self.dataset[self._config.test_split])
738
739
            return self.dataset[self._config.test_split]

740
    def fewshot_docs(self):
741
        if self._config.fewshot_split is not None:
742
            return self.dataset[self._config.fewshot_split]
743
744
745
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
746
                    f"Task '{self._config.task}': "
747
748
749
750
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
751

752
753
754
755
756
757
758
759
760
    def apply_filters(self):

        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

761
762
763
764
765
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
766
767
768
769
770
771
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
772

773
774
775
776
777
778
779
780
781
782
783
784
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
785
786
787

        if self.prompt is not None:
            doc_to_text = self.prompt
788
789
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
790

791
792
793
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
794
            if doc_to_text in self.features:
795
796
797
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
798
799
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
800
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
801
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
802
803
804
                    return ast.literal_eval(text_string)
                else:
                    return text_string
805
        elif callable(doc_to_text):
806
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
807
        # Used when applying a Promptsource template
808
        elif hasattr(doc_to_text, "apply"):
809
810
811
812
813
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
814
                return self._config.fewshot_delimiter
815
        else:
816
            print(type(doc_to_text))
817
            raise TypeError
818

819
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
820
821
822

        if self.prompt is not None:
            doc_to_target = self.prompt
823
824
825
        else:
            doc_to_target = self._config.doc_to_target

826
827
828
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
829
            if doc_to_target in self.features:
830
831
832
833
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
834
            else:
lintangsutawika's avatar
lintangsutawika committed
835
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
836
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
837
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
838
839
840
841
842
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
843
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
844
845
                else:
                    return target_string
846
847
        elif type(doc_to_target) == list:
            return doc_to_target
848
        elif callable(doc_to_target):
849
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
850
        # Used when applying a Promptsource template
851
        elif hasattr(doc_to_target, "apply"):
852
            applied_prompt = doc_to_target.apply(doc)
853
854
855
856
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
857
                return self._config.fewshot_delimiter
858
859
        else:
            raise TypeError
860

baberabb's avatar
baberabb committed
861
    def doc_to_choice(self, doc: Any) -> List[str]:
862
863
864

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
865
        elif self._config.doc_to_choice is None:
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
882

883
    def gold_alias(self, doc):
884
885
886
887
888
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
889
        if self._config.gold_alias is not None:
890
891
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
892
            return self.doc_to_target(doc)
893
894
895
896
897
898
899
900
901
902

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
903
904
905
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
906

907
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
908
            arguments = (ctx, self.doc_to_target(doc))
909
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
910
            arguments = (self.doc_to_target(doc),)
911
        elif self.OUTPUT_TYPE == "multiple_choice":
912
913

            choices = self.doc_to_choice(doc)
914
            target_delimiter = self._config.target_delimiter
915
916
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
917
                cont = self.doc_to_target(doc)
918
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
919
            else:
920
                # Otherwise they are placed in the continuation
921
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
922

923
            request_list = [
924
925
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
926
                    doc=doc,
927
                    arguments=arg,
928
                    idx=i,
929
930
                    **kwargs,
                )
931
                for i, arg in enumerate(arguments)
932
            ]
933
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
934
            if "acc_mutual_info" in self._metric_fn_list.keys():
935
936
937
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
938
                # here mutual info refers to calculating
939
940
941
942
943
944
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
945
                            doc=doc,
946
                            arguments=("", "{}".format(choice)),
947
948
949
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
950
                        for i, choice in enumerate(choices)
951
952
953
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
954

955
        elif self.OUTPUT_TYPE == "greedy_until":
956
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
957
958

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
959
960
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
961
962
963

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
964
965
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
966

967
        result_dict = {}
968
        use_metric = list(self._metric_fn_list.keys())
969
970
971
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
972
973
974
975
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
976
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
977
            (loglikelihood,) = results
978
979
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
980
            return {
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
996
            }
997
        elif self.OUTPUT_TYPE == "multiple_choice":
998
999

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1000

1001
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1002
            choices = self.doc_to_choice(doc)
1003
1004
            completion_len = np.array([float(len(i)) for i in choices])

1005
1006
            if (
                2 * len(choices) == len(lls)
1007
                and "acc_mutual_info" in self._metric_fn_list.keys()
1008
1009
1010
1011
1012
1013
1014
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1015

1016
1017
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1018

1019
1020
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1021
            else:
1022
                gold = self.doc_to_target(doc)
1023
1024
1025

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1026
1027
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1028
1029
1030
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1031
                    gold = gold if gold < len(choices) else -100
1032
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1033
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1034

Lintang Sutawika's avatar
Lintang Sutawika committed
1035
                if gold == -100:
1036
1037
1038
1039
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1040
                    f"Label index was not in within range of available choices,"
1041
1042
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1043

1044
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1045
1046
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1047
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1048
1049
1050
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1051
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1052
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1053
1054

            result_dict = {
1055
                **({"acc": acc} if "acc" in use_metric else {}),
1056
1057
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1058
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1059
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1060
1061
            }

1062
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1063
1064
1065
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1066
1067
1068
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1069
1070
        elif self.OUTPUT_TYPE == "greedy_until":

1071
            gold = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1072
            if self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1073
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1074
                # it assumes that doc_to_target returns a number.
1075
1076
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1077
1078
            else:
                gold = str(gold)
1079

lintangsutawika's avatar
lintangsutawika committed
1080
            result = results[0]
lintangsutawika's avatar
lintangsutawika committed
1081
            for metric in self._metric_fn_list.keys():
1082
1083
1084
1085
1086
1087
1088
1089
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[metric](
                            references=[gold_option],
haileyschoelkopf's avatar
haileyschoelkopf committed
1090
                            predictions=[result],
lintangsutawika's avatar
lintangsutawika committed
1091
                            **self._metric_fn_kwargs[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
1092
                        )
1093
                        if isinstance(res, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1094
                            # TODO: this handles the case where HF evaluate returns a dict.
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
                            res = res[metric]
                        scores.append(res)
                    if any(scores):
                        result_score = 1.0
                    else:
                        result_score = 0.0
                else:
                    result_score = self._metric_fn_list[metric](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[metric],
                    )
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1111
        else:
lintangsutawika's avatar
lintangsutawika committed
1112
1113
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1114
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1115
            )
1116
1117
1118
1119
1120
1121
1122

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1123
        return self._higher_is_better
1124
1125
1126
1127
1128


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1129
    def doc_to_target(self, doc: dict) -> str:
1130
1131
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1132
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1133
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1134
1135
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1136
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1137
                doc=doc,
1138
                arguments=(ctx, " {}".format(choice)),
1139
                idx=i,
1140
1141
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1142
1143
            for i, choice in enumerate(doc["choices"])
        ]
1144

baberabb's avatar
baberabb committed
1145
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1146
1147
1148
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1160
    def higher_is_better(self) -> dict:
1161
1162
1163
1164
1165
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1166
    def aggregation(self) -> dict:
1167
1168
1169
1170
1171
1172
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1173
class PerplexityTask(Task):
1174
1175
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1176
    def has_training_docs(self) -> bool:
1177
1178
        return False

baberabb's avatar
baberabb committed
1179
    def fewshot_examples(self, k: int, rnd) -> List:
1180
1181
1182
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1183
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1184
1185
1186
1187
1188
1189
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1190
    def higher_is_better(self) -> dict:
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1206
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1207
1208
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1209
1210
1211
1212
1213
1214
1215
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1216

baberabb's avatar
baberabb committed
1217
    def process_results(self, doc: dict, results: float) -> dict:
1218
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1219
1220
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1221
1222
1223
1224
1225
1226
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1227
    def aggregation(self) -> dict:
1228
1229
1230
1231
1232
1233
1234
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1235
    def count_bytes(cls, doc) -> int:
1236
1237
1238
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1239
    def count_words(cls, doc) -> int:
1240
1241
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))