task.py 47.2 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
78
    fewshot_config: dict = None
79
    # runtime configuration options
80
    num_fewshot: int = 0
81
    # scoring options
82
    metric_list: list = None
83
    output_type: str = "generate_until"
84
    generation_kwargs: dict = None
85
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
86
    filter_list: Union[str, list] = None
87
88
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
89

lintangsutawika's avatar
lintangsutawika committed
90
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
91

Ethan Smith's avatar
Ethan Smith committed
92
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
93
94
95
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
96

lintangsutawika's avatar
lintangsutawika committed
97
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
98

Lintang Sutawika's avatar
Lintang Sutawika committed
99
        if self.generation_kwargs is not None:
100
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
101
                eval_logger.warning(
102
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                )
104
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
117
                    "until": None
118
119
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
120
121
                    "do_sample": False,
                }
122

haileyschoelkopf's avatar
haileyschoelkopf committed
123
124
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self):
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
146
147
148
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
        return cfg_dict
150

151
152
153
154
155
156
157
158
159
160
161
162

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
163

164
165
166
167
168
169
170
171
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
172

173
174
175
176
177
178
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
179
    ) -> None:
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
206
        self._config = TaskConfig(**config) if config else TaskConfig()
207
208
209

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
210
            for name, components in self._config.get(
211
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
212
            ):
213
214
215
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
216
        self.sampler = samplers.Sampler(
217
218
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
219

Ethan Smith's avatar
Ethan Smith committed
220
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
245
246
247
248
249
250
251
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
252

253
254
255
256
257
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

294
295
296
297
298
299
300
301
302
303
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
304
            eval_logger.warning(
305
                "has_training_docs and has_validation_docs are False"
306
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
307
            )
308
309
            return self.test_docs()

310
311
312
313
314
315
316
317
318
319
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
320

321
322
323
324
325
326
327
328
329
330
331
332
333
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
334
    def doc_to_decontamination_query(self, doc) -> None:
335
336
337
338
339
340
341
342
343
344
345
346
347
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
348
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
349
350
351
352
353
354
355
356
357
358
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

359
        eval_logger.info(
360
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
361
362
        )

363
        instances = []
364
365
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
366
        ):
367
            # sample fewshot context #TODO: need to offset doc_id by rank now!
368
            fewshot_ctx = self.fewshot_context(
369
                doc,
370
                self.config.num_fewshot,
371
            )
372

373
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
374
375
376
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
377
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
378
            )
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
404
            The number of times each instance in a dataset is inferred on. Defaults to 1,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
440
441
442
443
444
445
446
447
448
449
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

450
    @utils.positional_deprecated
451
    def fewshot_context(self, doc, num_fewshot):
452
453
454
455
456
457
458
459
460
461
462
463
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
464
            # always prepend the (possibly empty) task description
465
            labeled_examples = self.config.description
466
        else:
467
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
468
469
                doc, num_fewshot
            )
470
471

        example = self.doc_to_text(doc)
472
473
474
475
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
476
        elif type(example) == int:
477
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
478
479
480
481
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
482
483

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
489
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
490

baberabb's avatar
baberabb committed
491
    def dump_config(self) -> dict:
492
        """Returns a dictionary representing the task's config.
493
494
495
496
497

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
498
        # (num_fewshot)
499
        return self.config.to_dict()
500

501
502

class ConfigurableTask(Task):
503
    VERSION = "Yaml"
504
    OUTPUT_TYPE = None
505
    CONFIG = None
506
507
508

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
509
    ) -> None:  # TODO no super() call here
510
        # Get pre-configured attributes
511
        self._config = self.CONFIG
512

513
        # Use new configurations if there was no preconfiguration
514
        if self.config is None:
515
            self._config = TaskConfig(**config)
516
517
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
518
            if config is not None:
519
                self._config.__dict__.update(config)
520

521
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
522
523
524
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
525

526
527
528
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
529

530
531
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
532

533
534
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
535

536
537
538
539
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
540

541
542
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
543
            # TODO: handle this in TaskConfig.__post_init__ ?
544
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
545
546
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
547
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
548
549
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
550
        else:
551
            for metric_config in self.config.metric_list:
552
553
554
555
556
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
557
558
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
559
                }
Chris's avatar
Chris committed
560
561
562
563
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
564

565
                if self.config.process_results is not None:
566
567
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
568
569
570
571
572
573
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
574
575
576
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
577
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
578

579
                if "aggregation" in metric_config:
580
                    agg_name = metric_config["aggregation"]
581
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
582
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
583
584
585
586
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
587
                else:
588
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
589
                    metric_agg = get_default_aggregation(metric_name)
590
                    eval_logger.warning(
baberabb's avatar
baberabb committed
591
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
592
593
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
594
                    )
595
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
596

597
598
599
600
601
602
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
603
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
604
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
605
                        f"higher_is_better={is_higher_better(metric_name)}"
606
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
607
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
608

609
        self.download(self.config.dataset_kwargs)
610
611
612
        self._training_docs = None
        self._fewshot_docs = None

613
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
614
            self._filters = []
615
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
616
617
618
619
620
621
622
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
623
624
625
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
626
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
627
        else:
628
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
629

630
631
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
632
            self.prompt = get_prompt(
633
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
634
            )
635
636
637
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
638
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
639
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
640
641
642
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
643
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
644

645
        if self.has_test_docs():
646
            self.task_docs = self.test_docs()
647
        elif self.has_validation_docs():
648
            self.task_docs = self.validation_docs()
649
650
651
652
653
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

654
        # Test One Doc
655
        self.features = list(self.task_docs.features.keys())
656
657
        self.multiple_input = 0
        self.multiple_target = 0
658
        test_doc = self.task_docs[0]
659
        test_text = self.doc_to_text(test_doc)
660
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
661

662
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
663
664
665
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
666
667
            else:
                num_choice = len(test_choice)
668

669
670
            if type(test_text) is int:
                self.multiple_input = num_choice
671
672
        else:
            test_choice = None
673

674
        if type(test_target) is list:
675
            self.multiple_target = len(test_target)
676
        else:
lintangsutawika's avatar
lintangsutawika committed
677
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
678
                test_target = test_choice[test_target]
679
            else:
lintangsutawika's avatar
lintangsutawika committed
680
                test_target = str(test_target)
681

682
683
684
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
685
            check_choices = [test_target]
686
687
688
689
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
lintangsutawika's avatar
lintangsutawika committed
690
                    True if (len(self.config.target_delimiter) >= 1 and self.config.target_delimiter[-1].isspace()) else False
691
                )
692

693
694
695
696
697
698
699
700
701
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
702
    def download(self, dataset_kwargs=None) -> None:
703
704
705
706
707
708
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
709
    def has_training_docs(self) -> bool:
710
        if self.config.training_split is not None:
711
712
713
714
            return True
        else:
            return False

baberabb's avatar
baberabb committed
715
    def has_validation_docs(self) -> bool:
716
        if self.config.validation_split is not None:
717
718
719
720
            return True
        else:
            return False

baberabb's avatar
baberabb committed
721
    def has_test_docs(self) -> bool:
722
        if self.config.test_split is not None:
723
724
725
726
            return True
        else:
            return False

baberabb's avatar
baberabb committed
727
    def training_docs(self) -> datasets.Dataset:
728
        if self.has_training_docs():
729
730
731
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
732
                )
733
            return self.dataset[self.config.training_split]
734

baberabb's avatar
baberabb committed
735
    def validation_docs(self) -> datasets.Dataset:
736
        if self.has_validation_docs():
737
738
739
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
740
                )
741
            return self.dataset[self.config.validation_split]
742

baberabb's avatar
baberabb committed
743
    def test_docs(self) -> datasets.Dataset:
744
        if self.has_test_docs():
745
746
747
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
748

749
    def fewshot_docs(self):
750
751
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
752
        else:
753
            if self.config.num_fewshot > 0:
754
                eval_logger.warning(
755
                    f"Task '{self.config.task}': "
756
757
758
759
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
760

761
762
763
764
765
766
767
768
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

769
    def should_decontaminate(self):
770
        return self.config.should_decontaminate
771
772

    def doc_to_decontamination_query(self, doc):
773
774
775
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
776
777
            else:
                return ast.literal_eval(
778
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
779
                )
780

781
782
783
784
785
786
787
788
789
790
791
792
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
793
794
        if self.prompt is not None:
            doc_to_text = self.prompt
795
        else:
796
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
797

798
799
800
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
801
            if doc_to_text in self.features:
802
                # if self.config.doc_to_choice is not None:
803
804
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
805
806
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
807
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
808
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
809
810
811
                    return ast.literal_eval(text_string)
                else:
                    return text_string
812
        elif callable(doc_to_text):
813
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
814
        # Used when applying a Promptsource template
815
        elif hasattr(doc_to_text, "apply"):
816
817
818
819
820
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
821
                return self.config.fewshot_delimiter
822
        else:
823
            print(type(doc_to_text))
824
            raise TypeError
825

826
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
827
828
        if self.prompt is not None:
            doc_to_target = self.prompt
829
        else:
830
            doc_to_target = self.config.doc_to_target
831

832
833
834
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
835
            if doc_to_target in self.features:
836
                # if self.config.doc_to_choice is not None:
837
838
839
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
840
            else:
lintangsutawika's avatar
lintangsutawika committed
841
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
842
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
843
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
844
845
846
847
848
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
849
850
851
852
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
853
854
                else:
                    return target_string
855
856
        elif type(doc_to_target) == list:
            return doc_to_target
857
        elif callable(doc_to_target):
858
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
859
        # Used when applying a Promptsource template
860
        elif hasattr(doc_to_target, "apply"):
861
            applied_prompt = doc_to_target.apply(doc)
862
863
864
865
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
866
                return self.config.fewshot_delimiter
867
868
        else:
            raise TypeError
869

baberabb's avatar
baberabb committed
870
    def doc_to_choice(self, doc: Any) -> List[str]:
871
872
        if self.prompt is not None:
            doc_to_choice = self.prompt
873
        elif self.config.doc_to_choice is None:
874
875
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
876
            doc_to_choice = self.config.doc_to_choice
877
878
879
880
881
882
883
884
885
886
887
888
889

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
890

891
    def gold_alias(self, doc):
892
893
894
895
896
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
897
898
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
899
        else:
lintangsutawika's avatar
lintangsutawika committed
900
            return self.doc_to_target(doc)
901
902
903
904
905
906
907
908
909
910

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
911
912
913
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
914
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
915
            arguments = (ctx, self.doc_to_target(doc))
916
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
917
            arguments = (self.doc_to_target(doc),)
918
        elif self.OUTPUT_TYPE == "multiple_choice":
919
            choices = self.doc_to_choice(doc)
920
            target_delimiter = self.config.target_delimiter
921
922
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
923
                cont = self.doc_to_target(doc)
924
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
925
            else:
926
                # Otherwise they are placed in the continuation
927
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
928

929
            request_list = [
930
931
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
932
                    doc=doc,
933
                    arguments=arg,
934
                    idx=i,
935
936
                    **kwargs,
                )
937
                for i, arg in enumerate(arguments)
938
            ]
939
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
940
            if "acc_mutual_info" in self._metric_fn_list.keys():
941
942
943
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
944
                # here mutual info refers to calculating
945
946
947
948
949
950
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
951
                            doc=doc,
952
                            arguments=("", "{}".format(choice)),
953
954
955
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
956
                        for i, choice in enumerate(choices)
957
958
959
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
960

961
        elif self.OUTPUT_TYPE == "generate_until":
962
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
963
964

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
965
966
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
967
968

    def process_results(self, doc, results):
969
970
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
971

972
        result_dict = {}
973
        use_metric = list(self._metric_fn_list.keys())
974
975
976
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
977
978
979
980
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
981
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
982
            (loglikelihood,) = results
983
984
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
985
            return {
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1001
            }
1002
        elif self.OUTPUT_TYPE == "multiple_choice":
1003
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1004

1005
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1006
            choices = self.doc_to_choice(doc)
1007
1008
            completion_len = np.array([float(len(i)) for i in choices])

1009
1010
            if (
                2 * len(choices) == len(lls)
1011
                and "acc_mutual_info" in self._metric_fn_list.keys()
1012
1013
1014
1015
1016
1017
1018
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1019

1020
1021
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1022

1023
1024
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1025
            else:
1026
                gold = self.doc_to_target(doc)
1027
1028
1029

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1030
1031
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1032
1033
1034
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1035
                    gold = gold if gold < len(choices) else -100
1036
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1037
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1038

Lintang Sutawika's avatar
Lintang Sutawika committed
1039
                if gold == -100:
1040
1041
1042
1043
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1044
                    f"Label index was not in within range of available choices,"
1045
1046
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1047

1048
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1049
1050
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1051
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1052
1053
1054
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1055
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1056
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1057
1058

            result_dict = {
1059
                **({"acc": acc} if "acc" in use_metric else {}),
1060
1061
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1062
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1063
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1064
1065
            }

1066
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1067
1068
1069
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1070
1071
1072
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1073
        elif self.OUTPUT_TYPE == "generate_until":
1074
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1075
            result = results[0]
1076
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1077
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1078
                # it assumes that doc_to_target returns a number.
1079
1080
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1081
1082
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1083
                gold = list(gold)
Chris's avatar
Chris committed
1084
1085
1086
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1087

lintangsutawika's avatar
lintangsutawika committed
1088
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1089
1090
1091
1092
1093
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1094
1095
1096
1097
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1098
                    for gold_option in gold:
1099
                        try:
1100
                            result_score = self._metric_fn_list[metric](
1101
1102
                                references=[gold_option],
                                predictions=[result],
1103
                                **self._metric_fn_kwargs[metric],
1104
                            )
baberabb's avatar
baberabb committed
1105
1106
1107
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1108
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1109
1110
1111
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1112
                            # TODO: this handles the case where HF evaluate returns a dict.
1113
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1114
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1115
                    if any(scores):
1116
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1117
                    else:
1118
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1119
                else:
1120
                    try:
1121
                        result_score = self._metric_fn_list[metric](
1122
1123
                            references=[gold],
                            predictions=[result],
1124
                            **self._metric_fn_kwargs[metric],
1125
                        )
baberabb's avatar
baberabb committed
1126
1127
1128
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1129
                        result_score = self._metric_fn_list[metric]([gold, result])
1130
1131
1132
1133
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1134
        else:
lintangsutawika's avatar
lintangsutawika committed
1135
1136
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1137
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1138
            )
1139
1140
1141
1142
1143
1144
1145

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1146
        return self._higher_is_better
1147
1148
1149
1150
1151


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1152
    def doc_to_target(self, doc: dict) -> str:
1153
1154
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1155
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1156
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1157
1158
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1159
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1160
                doc=doc,
1161
                arguments=(ctx, " {}".format(choice)),
1162
                idx=i,
1163
1164
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1165
1166
            for i, choice in enumerate(doc["choices"])
        ]
1167

baberabb's avatar
baberabb committed
1168
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1169
1170
1171
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1183
    def higher_is_better(self) -> dict:
1184
1185
1186
1187
1188
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1189
    def aggregation(self) -> dict:
1190
1191
1192
1193
1194
1195
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1196
class PerplexityTask(Task):
1197
1198
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1199
    def has_training_docs(self) -> bool:
1200
1201
        return False

baberabb's avatar
baberabb committed
1202
    def fewshot_examples(self, k: int, rnd) -> List:
1203
1204
1205
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1206
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1207
1208
1209
1210
1211
1212
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1213
    def higher_is_better(self) -> dict:
1214
1215
1216
1217
1218
1219
1220
1221
1222
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1223
    def doc_to_text(self, doc) -> str:
1224
1225
1226
1227
1228
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1229
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1230
1231
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1232
1233
1234
1235
1236
1237
1238
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1239

baberabb's avatar
baberabb committed
1240
    def process_results(self, doc: dict, results: float) -> dict:
1241
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1242
1243
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1244
1245
1246
1247
1248
1249
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1250
    def aggregation(self) -> dict:
1251
1252
1253
1254
1255
1256
1257
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1258
    def count_bytes(cls, doc) -> int:
1259
1260
1261
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1262
    def count_words(cls, doc) -> int:
1263
1264
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))