gpt.py 47.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
from collections import OrderedDict, namedtuple
Tri Dao's avatar
Tri Dao committed
7
from collections.abc import Sequence
Tri Dao's avatar
Tri Dao committed
8
from functools import partial
Yuchao Dai's avatar
Yuchao Dai committed
9
from typing import Dict, List
Tri Dao's avatar
Tri Dao committed
10
11
12
13

import torch
import torch.nn as nn
import torch.nn.functional as F
14
from einops import rearrange
Tri Dao's avatar
Tri Dao committed
15
16
from transformers import GPT2Config

Kevin Hu's avatar
Kevin Hu committed
17
from flash_attn.models.bigcode import remap_state_dict_hf_bigcode
Tri Dao's avatar
Tri Dao committed
18
19
20
from flash_attn.models.falcon import remap_state_dict_hf_falcon
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
from flash_attn.models.gptj import remap_state_dict_hf_gptj
21
from flash_attn.models.llama import remap_state_dict_hf_llama
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.models.opt import remap_state_dict_hf_opt
Tri Dao's avatar
Tri Dao committed
23
from flash_attn.modules.block import Block, ParallelBlock
24
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
Tri Dao's avatar
Tri Dao committed
25
from flash_attn.modules.mha import MHA, ParallelMHA
Kevin Hu's avatar
Kevin Hu committed
26
27
28
29
30
31
32
33
from flash_attn.modules.mlp import (
    FusedMLP,
    GatedMlp,
    Mlp,
    ParallelFusedMLP,
    ParallelGatedMlp,
    ParallelMLP,
)
Tri Dao's avatar
Tri Dao committed
34
from flash_attn.ops.activations import sqrelu_fwd
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40
from flash_attn.utils.distributed import (
    all_gather,
    all_gather_raw,
    get_dim_for_local_rank,
    sync_shared_params,
)
Tri Dao's avatar
Tri Dao committed
41
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
42
from flash_attn.utils.pretrained import state_dict_from_pretrained
43
44
45
46
47

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
48
49
50
51
52
53

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

54
try:
Kevin Hu's avatar
Kevin Hu committed
55
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
56
57
58
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
59
60
61
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
62
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
63
64
65
66
67
68

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
69
try:
Tri Dao's avatar
Tri Dao committed
70
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
71
72
73
except ImportError:
    FusedDenseSqreluDense = None

74
75
76
logger = logging.getLogger(__name__)


77
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
78
79
    factory_kwargs = {"device": device, "dtype": dtype}
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
Tri Dao's avatar
Tri Dao committed
80
81
82
    attn_scale_power = 0.5 if not getattr(config, "mup_scale_qk_dot_by_d", False) else 1.0
    softmax_scale = 1.0 if not config.scale_attn_weights else (head_dim ** (-attn_scale_power))
    softmax_scale *= getattr(config, "mup_attn_multiplier", 1.0)
Tri Dao's avatar
Tri Dao committed
83
84
85
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
Tri Dao's avatar
Tri Dao committed
86
    dwconv = getattr(config, "attn_dwconv", False)
87
    if dwconv:
Tri Dao's avatar
Tri Dao committed
88
89
90
91
92
93
94
        assert process_group is None, "TensorParallel MHA does not support dwconv yet"
    qkv_proj_bias = getattr(config, "qkv_proj_bias", True)
    out_proj_bias = getattr(config, "out_proj_bias", True)
    rotary_emb_dim = int(getattr(config, "rotary_emb_fraction", 0.0) * head_dim)
    rotary_emb_base = getattr(config, "rotary_emb_base", 10000.0)
    rotary_emb_scale_base = getattr(config, "rotary_emb_scale_base", None)
    rotary_emb_interleaved = getattr(config, "rotary_emb_interleaved", False)
95
    use_alibi = getattr(config, "use_alibi", False)
Tri Dao's avatar
Tri Dao committed
96
97
    use_flash_attn = getattr(config, "use_flash_attn", False)
    fused_bias_fc = getattr(config, "fused_bias_fc", False)
98
    if not fused_bias_fc:
Tri Dao's avatar
Tri Dao committed
99
        assert process_group is None, "TensorParallel MHA requires fused_bias_fc"
100
    mha_cls = MHA if process_group is None else ParallelMHA
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105
106
107
108
109
110
111
    serial_kwargs = (
        {"fused_bias_fc": fused_bias_fc, "dwconv": dwconv} if process_group is None else {}
    )
    parallel_kwargs = (
        {
            "process_group": process_group,
            "sequence_parallel": getattr(config, "sequence_parallel", True),
        }
        if process_group is not None
        else {}
    )
Tri Dao's avatar
Tri Dao committed
112
    num_heads_kv = getattr(config, "n_head_kv", None)
Tri Dao's avatar
Tri Dao committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    mixer_cls = partial(
        mha_cls,
        num_heads=config.num_attention_heads,
        num_heads_kv=num_heads_kv,
        qkv_proj_bias=qkv_proj_bias,
        out_proj_bias=out_proj_bias,
        dropout=config.attn_pdrop,
        softmax_scale=softmax_scale,
        causal=True,
        layer_idx=layer_idx,
        rotary_emb_dim=rotary_emb_dim,
        rotary_emb_base=rotary_emb_base,
        rotary_emb_scale_base=rotary_emb_scale_base,
        rotary_emb_interleaved=rotary_emb_interleaved,
127
        use_alibi=use_alibi,
Tri Dao's avatar
Tri Dao committed
128
129
130
131
132
        use_flash_attn=use_flash_attn,
        **serial_kwargs,
        **parallel_kwargs,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
133
134
135
    return mixer_cls


136
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
137
138
139
140
    factory_kwargs = {"device": device, "dtype": dtype}
    mlp_fc1_bias = getattr(config, "mlp_fc1_bias", True)
    mlp_fc2_bias = getattr(config, "mlp_fc2_bias", True)
    fused_mlp = getattr(config, "fused_mlp", False)
141
    if fused_mlp:
Tri Dao's avatar
Tri Dao committed
142
143
144
145
        assert config.activation_function in [
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
146
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
147
148
149
150
            "relu",
            "sqrelu",
        ]
    fused_dense_sqrelu_dense = getattr(config, "fused_dense_sqrelu_dense", False)
151
    if fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
152
153
154
        assert config.activation_function == "sqrelu", (
            "fused_dense_sqrelu_dense only " "supports approximate activation_function sqrelu"
        )
155
156
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
157
158
159
160
161
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
162
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
168
169
170
171
172
173
174
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            activation = (
                F.sigmoid
                if config.activation_function == "glu"
                else (F.silu if config.activation_function == "swiglu" else F.gelu)
            )
175
            mlp_cls = GatedMlp if process_group is None else ParallelGatedMlp
Tri Dao's avatar
Tri Dao committed
176
177
178
179
180
181
182
183
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
Tri Dao's avatar
Tri Dao committed
184
            mlp_multiple_of = getattr(config, "mlp_multiple_of", 128)
Tri Dao's avatar
Tri Dao committed
185
186
187
188
189
190
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
Tri Dao's avatar
Tri Dao committed
191
                multiple_of=mlp_multiple_of,
Tri Dao's avatar
Tri Dao committed
192
193
194
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
195
        else:
Tri Dao's avatar
Tri Dao committed
196
            if config.activation_function == "relu":
Tri Dao's avatar
Tri Dao committed
197
                activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
198
            elif config.activation_function == "sqrelu":
Tri Dao's avatar
Tri Dao committed
199
200
                activation = sqrelu_fwd
            else:
Tri Dao's avatar
Tri Dao committed
201
202
                approximate = (
                    "tanh"
Kevin Hu's avatar
Kevin Hu committed
203
204
                    if config.activation_function
                    in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
205
206
207
                    else "none"
                )
                activation = partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
208
            mlp_cls = Mlp if process_group is None else ParallelMLP
Tri Dao's avatar
Tri Dao committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
226
    else:
Tri Dao's avatar
Tri Dao committed
227
        mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
Tri Dao's avatar
Tri Dao committed
228
229
230
231
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
232
233
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
234
235
236
                raise ImportError("fused_dense is not installed")
            activation = (
                "gelu_approx"
Kevin Hu's avatar
Kevin Hu committed
237
238
                if config.activation_function
                in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
239
240
                else config.activation_function
            )
241
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                checkpoint_lvl=mlp_checkpoint_lvl,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
260
        elif fused_dense_sqrelu_dense:
261
            if process_group is not None:
Tri Dao's avatar
Tri Dao committed
262
                assert fused_mlp, "Tensor Parallel is not implemented for FusedDenseSqreluDense"
Tri Dao's avatar
Tri Dao committed
263
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
264
265
266
267
268
269
            mlp_cls = partial(
                FusedDenseSqreluDense,
                hidden_features=config.n_inner,
                checkpoint_lvl=mlp_checkpoint_lvl,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
270
        else:
Tri Dao's avatar
Tri Dao committed
271
            raise RuntimeError("MLP type not supported")
Tri Dao's avatar
Tri Dao committed
272
273
274
    return mlp_cls


275
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
276
277
    factory_kwargs = {"device": device, "dtype": dtype}
    sequence_parallel = getattr(config, "sequence_parallel", True)
278
279
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
280
281
282
283
284
285
    use_rms_norm = getattr(config, "rms_norm", False)
    norm_cls = partial(
        nn.LayerNorm if not use_rms_norm else RMSNorm,
        eps=config.layer_norm_epsilon,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
286
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
287
    residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
288
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
Tri Dao's avatar
Tri Dao committed
289
290
    prenorm = getattr(config, "prenorm", True)
    parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
291
292
    if not parallel_block:
        block = Block(
Tri Dao's avatar
Tri Dao committed
293
294
295
296
297
298
299
300
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            prenorm=prenorm,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
301
302
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
303
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
304
305
306
307
        )
    else:
        assert prenorm
        block = ParallelBlock(
Tri Dao's avatar
Tri Dao committed
308
309
310
311
312
313
314
315
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, "parallel_block_tied_norm", False),
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
316
317
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
318
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
319
        )
Tri Dao's avatar
Tri Dao committed
320
321
322
323
    block.layer_idx = layer_idx
    return block


324
class GPTPreTrainedModel(nn.Module):
Tri Dao's avatar
Tri Dao committed
325
326
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
327
    """
Tri Dao's avatar
Tri Dao committed
328

329
330
331
332
333
334
335
336
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
Tri Dao's avatar
Tri Dao committed
337
338
                )
            )
339
340
341
        self.config = config

    @classmethod
Tri Dao's avatar
Tri Dao committed
342
343
344
345
346
347
348
349
350
351
352
353
    def from_pretrained(
        cls,
        model_name,
        config,
        *args,
        strict=True,
        device=None,
        dtype=None,
        world_size=1,
        rank=0,
        **kwargs,
    ):
354
355
356
357
358
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
359
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
360
361
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
362
363
        state_dict = state_dict_from_pretrained(model_name, device="cpu", dtype=dtype)
        if model_name.startswith("gpt2"):
Tri Dao's avatar
Tri Dao committed
364
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
365
        elif model_name.startswith("facebook/opt"):
Tri Dao's avatar
Tri Dao committed
366
            state_dict = remap_state_dict_hf_opt(state_dict, config)
Tri Dao's avatar
Tri Dao committed
367
368
        elif model_name.startswith("EleutherAI/gpt-j-") or model_name.startswith(
            "togethercomputer/GPT-JT-"
369
        ):
Tri Dao's avatar
Tri Dao committed
370
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
371
372
373
374
375
        elif (
            model_name.startswith("EleutherAI/gpt-neox-")
            or model_name.startswith("EleutherAI/pythia-")
            or model_name.startswith("togethercomputer/RedPajama-INCITE-")
        ):
Tri Dao's avatar
Tri Dao committed
376
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
377
        elif model_name.startswith("tiiuae/falcon-"):
Tri Dao's avatar
Tri Dao committed
378
            state_dict = remap_state_dict_hf_falcon(state_dict, config)
379
380
        elif model_name.startswith("meta-llama/Llama-"):
            state_dict = remap_state_dict_hf_llama(state_dict, config)
Kevin Hu's avatar
Kevin Hu committed
381
382
        elif model_name.startswith("bigcode/") or model_name.startswith("WizardLM/"):
            state_dict = remap_state_dict_hf_bigcode(state_dict, config)
Tri Dao's avatar
Tri Dao committed
383
        else:
Tri Dao's avatar
Tri Dao committed
384
            raise NotImplementedError(f"Model {model_name} not supported")
385
386
387
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
388
389
390
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
391

Tri Dao's avatar
Tri Dao committed
392
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
Tri Dao's avatar
Tri Dao committed
393
394
395
396
def _init_weights(
    module, n_layer, initializer_range=0.02, mup_width_scale=1.0, rescale_prenorm_residual=True
):
    mup_init_scale = math.sqrt(mup_width_scale)
Tri Dao's avatar
Tri Dao committed
397
    if isinstance(module, nn.Linear):
Tri Dao's avatar
Tri Dao committed
398
399
        nn.init.normal_(module.weight, std=initializer_range * mup_init_scale)
        module.weight._optim = {"lr_multiplier": mup_width_scale}
Tri Dao's avatar
Tri Dao committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
Tri Dao's avatar
Tri Dao committed
415
416
417
                nn.init.normal_(
                    p, mean=0.0, std=initializer_range * mup_init_scale / math.sqrt(2 * n_layer)
                )
Tri Dao's avatar
Tri Dao committed
418
419


420
class GPTModel(GPTPreTrainedModel):
421
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
422
        super().__init__(config)
Tri Dao's avatar
Tri Dao committed
423
        factory_kwargs = {"device": device, "dtype": dtype}
424
        self.process_group = process_group
Tri Dao's avatar
Tri Dao committed
425
426
427
428
429
430
        self.sequence_parallel = getattr(config, "sequence_parallel", True)
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
431
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
439
440
441
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
442
        self.embeddings_multiplier = getattr(config, "mup_embeddings_multiplier", 1.0)
Tri Dao's avatar
Tri Dao committed
443
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
444
        self.residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
445
        # These 2 options are for OPT-350m
Tri Dao's avatar
Tri Dao committed
446
447
448
        self.prenorm = getattr(config, "prenorm", True)
        use_rms_norm = getattr(config, "rms_norm", False)
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
449
        # For GPT-J, GPT-NeoX
Tri Dao's avatar
Tri Dao committed
450
        self.parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
451

452
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
453
            self.embeddings = GPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
454
455
456
457
458
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim,
                **factory_kwargs,
Tri Dao's avatar
Tri Dao committed
459
            )
460
461
        else:
            self.embeddings = ParallelGPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
462
463
464
465
466
467
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                process_group=process_group,
                sequence_parallel=self.sequence_parallel,
                **factory_kwargs,
468
            )
Tri Dao's avatar
Tri Dao committed
469

Tri Dao's avatar
Tri Dao committed
470
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
471
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
472
473
474
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
475
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
476
477
478
479
480
481
        self.layers = nn.ModuleList(
            [
                create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
                for i in range(config.num_hidden_layers)
            ]
        )
Tri Dao's avatar
Tri Dao committed
482

Tri Dao's avatar
Tri Dao committed
483
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
484
        if self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
485
486
487
488
            if (not self.parallel_block and dropout_add_layer_norm is None) or (
                self.parallel_block and dropout_add_layer_norm_parallel_residual is None
            ):
                raise ImportError("dropout_layer_norm is not installed")
Tri Dao's avatar
Tri Dao committed
489
490
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
491
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
Tri Dao's avatar
Tri Dao committed
492
493
494
            self.ln_f = norm_cls(
                config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs
            )
495
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
496
            for p in self.ln_f.parameters():
497
498
499
500
501
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
502

Tri Dao's avatar
Tri Dao committed
503
504
505
506
507
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
Tri Dao's avatar
Tri Dao committed
508
                mup_width_scale=getattr(config, "mup_width_scale", 1.0),
Tri Dao's avatar
Tri Dao committed
509
510
            )
        )
511
512
513
        self.tie_weights()

    def tie_weights(self):
514
        if self.process_group is not None:
515
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
516

517
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
518
519
520
521
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }
522

Tri Dao's avatar
Tri Dao committed
523
    def forward(self, input_ids, position_ids=None, inference_params=None):
524
525
526
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
Tri Dao's avatar
Tri Dao committed
527
528
529
530
531
        embedding_kwargs = (
            {"combine_batch_seqlen_dim": True}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
532
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
533
534
        if self.embeddings_multiplier != 1.0:
            hidden_states = hidden_states * self.embeddings_multiplier
Tri Dao's avatar
Tri Dao committed
535
536
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
537
        residual = None
Tri Dao's avatar
Tri Dao committed
538
539
540
541
542
        mixer_kwargs = (
            {"seqlen": input_ids.shape[1]}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
Tri Dao's avatar
Tri Dao committed
543
        if inference_params is not None:
Tri Dao's avatar
Tri Dao committed
544
            mixer_kwargs["inference_params"] = inference_params
Tri Dao's avatar
Tri Dao committed
545
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
546
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
547
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
548
549
550
                    hidden_states, residual = layer(
                        hidden_states, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
551
552
553
554
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
555
556
557
558
559
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
560
561
562
563
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
Tri Dao's avatar
Tri Dao committed
564
565
566
567
568
                    residual = (
                        (residual + dropped + dropped2)
                        if residual is not None
                        else dropped + dropped2
                    )
Tri Dao's avatar
Tri Dao committed
569
570
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
571
                # Set prenorm=False here since we don't need the residual
572
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
573
574
575
576
577
                    fused_add_norm_fn = (
                        dropout_add_rms_norm
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm
                    )
578
                    hidden_states = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
579
580
581
582
583
584
585
586
                        hidden_states,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
587
588
                    )
                else:
Tri Dao's avatar
Tri Dao committed
589
590
591
592
593
                    fused_add_norm_fn = (
                        dropout_add_rms_norm_parallel_residual
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm_parallel_residual
                    )
594
                    hidden_states, _ = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
595
596
597
598
599
600
601
602
603
604
605
                        hidden_states,
                        hidden_states2,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        None,
                        None,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
606
                    )
Tri Dao's avatar
Tri Dao committed
607
608
609
        return hidden_states


Tri Dao's avatar
Tri Dao committed
610
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
611
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
612
        factory_kwargs = {"device": device, "dtype": dtype}
613
        super().__init__(config)
614
615
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
616
617
618
619
620
621
        self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
        lm_head_bias = getattr(config, "lm_head_bias", False)
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
622
        # This option is for OPT-350m
Tri Dao's avatar
Tri Dao committed
623
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
624
625
626
627
628
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
Tri Dao's avatar
Tri Dao committed
629
630
631
        mup_width_scale = getattr(config, "mup_width_scale", 1.0)
        mup_output_multiplier = getattr(config, "mup_output_multiplier", 1.0)
        self.output_scale = mup_output_multiplier * mup_width_scale
632
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
633
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
634
635
        else:
            if ColumnParallelLinear is None:
Tri Dao's avatar
Tri Dao committed
636
                raise ImportError("fused_dense_lib is not installed")
637
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
638
639
640
641
642
643
                embed_dim,
                vocab_size,
                process_group,
                bias=lm_head_bias,
                sequence_parallel=getattr(config, "sequence_parallel", True),
                **factory_kwargs,
644
            )
Tri Dao's avatar
Tri Dao committed
645
        self.norm_head = getattr(config, "norm_head", False)
Tri Dao's avatar
Tri Dao committed
646
        # Initialize weights and apply final processing
Tri Dao's avatar
Tri Dao committed
647
648
649
650
651
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
Tri Dao's avatar
Tri Dao committed
652
                mup_width_scale=mup_width_scale,
Tri Dao's avatar
Tri Dao committed
653
654
            )
        )
Tri Dao's avatar
Tri Dao committed
655
656
657
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
658
659
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
660
        if self.process_group is not None:
661
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
662

663
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
664
665
666
        return self.transformer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )
667

668
    def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
Tri Dao's avatar
Tri Dao committed
669
        """
670
        input_ids: (batch, seqlen) int tensor
Tri Dao's avatar
Tri Dao committed
671
672
        inference_params: for generation. Adapted from Megatron-LM (and Apex)
        https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
673
        num_last_tokens: if > 0, only return the logits for the last n tokens
Tri Dao's avatar
Tri Dao committed
674
        """
Kevin Hu's avatar
Kevin Hu committed
675
676
677
        assert (
            input_ids.ndim == 2
        ), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
678
        b, slen = input_ids.shape
Tri Dao's avatar
Tri Dao committed
679
680
681
        hidden_states = self.transformer(
            input_ids, position_ids=position_ids, inference_params=inference_params
        )
Tri Dao's avatar
Tri Dao committed
682
683
        if inference_params is not None:
            assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
684
685
        if num_last_tokens > 0:
            hidden_states = hidden_states[:, -num_last_tokens:]
Tri Dao's avatar
Tri Dao committed
686
687
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
688
689
        if self.output_scale != 1.0:
            hidden_states = hidden_states * self.output_scale
Tri Dao's avatar
Tri Dao committed
690
691
692
693
694
695
696
        if not self.norm_head:
            lm_logits = self.lm_head(hidden_states)
        else:
            lm_head_weight = F.normalize(self.lm_head.weight)
            if isinstance(self.lm_head, ColumnParallelLinear) and self.lm_head.sequence_parallel:
                hidden_states = all_gather(hidden_states, self.lm_head.process_group)
            lm_logits = F.linear(hidden_states, lm_head_weight, bias=self.lm_head.bias)
697
698
699
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
700
            lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
Tri Dao's avatar
Tri Dao committed
701
        CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
Tri Dao's avatar
Tri Dao committed
702
        return CausalLMOutput(logits=lm_logits)
703

Tri Dao's avatar
Tri Dao committed
704
705
706
707
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
Tri Dao's avatar
Tri Dao committed
708
        if "transformer.ln_0.weight" in state_dict:
Tri Dao's avatar
Tri Dao committed
709
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
710
711
712
713
            ln_weight = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.weight")
            ln_bias = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.bias")
            state_dict["transformer.ln_f.weight"] = ln_weight
            state_dict["transformer.ln_f.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
714
            for l in reversed(range(n_layers)):
Tri Dao's avatar
Tri Dao committed
715
716
717
718
                ln_weight = state_dict.pop(f"transformer.layers.{l}.norm1.weight")
                ln_bias = state_dict.pop(f"transformer.layers.{l}.norm1.bias")
                state_dict[f"transformer.layers.{l}.norm2.weight"] = ln_weight
                state_dict[f"transformer.layers.{l}.norm2.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
719
                if l > 0:
Tri Dao's avatar
Tri Dao committed
720
721
722
723
724
725
726
727
                    ln_weight = state_dict.pop(f"transformer.layers.{l - 1}.norm2.weight")
                    ln_bias = state_dict.pop(f"transformer.layers.{l - 1}.norm2.bias")
                    state_dict[f"transformer.layers.{l}.norm1.weight"] = ln_weight
                    state_dict[f"transformer.layers.{l}.norm1.bias"] = ln_bias
            ln_weight = state_dict.pop("transformer.ln_0.weight")
            ln_bias = state_dict.pop("transformer.ln_0.bias")
            state_dict[f"transformer.layers.0.norm1.weight"] = ln_weight
            state_dict[f"transformer.layers.0.norm1.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
728
729
        return super().load_state_dict(state_dict, strict=strict)

730

Tri Dao's avatar
Tri Dao committed
731
732
733
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
734
735

    This function modifies state_dict in place.
Tri Dao's avatar
Tri Dao committed
736
    """
Tri Dao's avatar
Tri Dao committed
737
738
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
739
740
741
742
743
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

744
745
746
747
748
749
    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

Tri Dao's avatar
Tri Dao committed
750
    def shard_first_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
751
752
753
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size
Tri Dao's avatar
Tri Dao committed
754
            state_dict[key] = x[rank * dim : (rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
755

756
    def shard_last_dim(state_dict, key, multiple_of=1):
Tri Dao's avatar
Tri Dao committed
757
758
        if key in state_dict:
            x = state_dict[key]
759
760
761
762
763
764
            dim_each_rank = [
                get_dim_for_local_rank(x.size(-1), world_size, local_rank, multiple_of)
                for local_rank in range(world_size)
            ]
            beg, end = tuple(sum(dim_each_rank[:pos]) for pos in (rank, rank + 1))
            state_dict[key] = x[..., beg:end]
Tri Dao's avatar
Tri Dao committed
765

Tri Dao's avatar
Tri Dao committed
766
767
768
769
770
    def shard_gatedmlp_fc1_dim(state_dict, key):
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size // 2
            state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
771
                rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim : (rank + 1) * dim],
Tri Dao's avatar
Tri Dao committed
772
                "two o ... -> (two o) ...",
Tri Dao's avatar
Tri Dao committed
773
774
            )

Tri Dao's avatar
Tri Dao committed
775
    def shard_qkv_headdim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
776
        if key in state_dict:
777
            n_head_each_rank = [
Tri Dao's avatar
Tri Dao committed
778
779
                get_dim_for_local_rank(n_head, world_size, local_rank)
                for local_rank in range(world_size)
780
781
            ]
            n_head_kv_each_rank = [
Tri Dao's avatar
Tri Dao committed
782
783
                get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                for local_rank in range(world_size)
784
785
786
787
788
789
790
791
            ]

            beg_n_head = sum(n_head_each_rank[:rank])
            end_n_head = sum(n_head_each_rank[: rank + 1])

            beg_n_head_kv = sum(n_head_kv_each_rank[:rank])
            end_n_head_kv = sum(n_head_kv_each_rank[: rank + 1])

Tri Dao's avatar
Tri Dao committed
792
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
793
794
                x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3)
                state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
795
796
                    x[:, beg_n_head * head_dim : end_n_head * head_dim],
                    "three d ... -> (three d) ...",
Tri Dao's avatar
Tri Dao committed
797
                )
Tri Dao's avatar
Tri Dao committed
798
            else:
Tri Dao's avatar
Tri Dao committed
799
800
801
802
803
804
805
806
                x = rearrange(
                    state_dict[key],
                    "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                    nheadqkv=n_head + 2 * n_head_kv,
                )
                state_dict[key] = rearrange(
                    torch.cat(
                        [
807
                            x[beg_n_head:end_n_head],
Tri Dao's avatar
Tri Dao committed
808
809
810
811
812
813
814
815
                            x[n_head + beg_n_head_kv : n_head + end_n_head_kv],
                            x[
                                n_head
                                + n_head_kv
                                + beg_n_head_kv : n_head
                                + n_head_kv
                                + end_n_head_kv
                            ],
Tri Dao's avatar
Tri Dao committed
816
817
818
819
820
821
822
823
824
825
826
                        ],
                        dim=0,
                    ),
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )

    shard_first_dim(state_dict, "transformer.embeddings.word_embeddings.weight")
    if "lm_head.weight" in state_dict:
        shard_first_dim(state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        shard_last_dim(state_dict, "transformer.embeddings.position_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
827
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
828
829
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
830
831
832
        shard_last_dim(
            state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", multiple_of=head_dim
        )
Tri Dao's avatar
Tri Dao committed
833
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
834
            state_dict.pop(f"transformer.layers.{i}.mixer.out_proj.bias", None)
Tri Dao's avatar
Tri Dao committed
835
        if config.activation_function in ["glu", "swiglu", "geglu"]:
Tri Dao's avatar
Tri Dao committed
836
837
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
Tri Dao's avatar
Tri Dao committed
838
        else:
Tri Dao's avatar
Tri Dao committed
839
840
841
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
        shard_last_dim(state_dict, f"transformer.layers.{i}.mlp.fc2.weight")
Tri Dao's avatar
Tri Dao committed
842
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
843
            state_dict.pop(f"transformer.layers.{i}.mlp.fc2.bias", None)
Tri Dao's avatar
Tri Dao committed
844
845
846
    return state_dict


Yuchao Dai's avatar
Yuchao Dai committed
847
def combine_state_dicts_tp(state_dicts: List[Dict[str, torch.Tensor]], config: GPT2Config):
848
849
    """Convert the list of sharded state_dict of a GPT model with tensor parallel to
    the state_dict of a standard GPT model.
850
851

    This function is meant to be the "reverse" of shard_state_dict_tp.
852
853
854

    Precondition:
        - state_dicts should be ordered in the same way as the shards were created.
Tri Dao's avatar
Tri Dao committed
855
856
857
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
Tri Dao's avatar
Tri Dao committed
858
859
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
860
861
862
863
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0
864
865
    assert config.hidden_size % config.n_head == 0
    headdim = config.hidden_size // config.n_head
Tri Dao's avatar
Tri Dao committed
866

Tri Dao's avatar
Tri Dao committed
867
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
868
869
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
870
871
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
872
873

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
874
875
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
876
877

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
878
        n_head = config.n_head
Tri Dao's avatar
Tri Dao committed
879
        n_head_kv = getattr(config, "n_head_kv", n_head)
Tri Dao's avatar
Tri Dao committed
880
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
881
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
882
883
884
885
                xs = [
                    rearrange(s[key], "(three d) ... -> three d ...", three=3) for s in state_dicts
                ]
                state_dict[key] = rearrange(torch.cat(xs, dim=1), "three d ... -> (three d) ...")
Tri Dao's avatar
Tri Dao committed
886
            else:
887
888
889
890
891
892
893
894
                n_head_each_rank = [
                    get_dim_for_local_rank(n_head, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
                n_head_kv_each_rank = [
                    get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
895
896
897
898
899
900
901
                xs = [
                    rearrange(
                        s[key],
                        "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                        nheadqkv=rank_n_head + 2 * rank_n_head_kv,
                        headdim=headdim,
                    )
Kevin Hu's avatar
Kevin Hu committed
902
903
904
                    for s, rank_n_head, rank_n_head_kv in zip(
                        state_dicts, n_head_each_rank, n_head_kv_each_rank
                    )
905
                ]
Kevin Hu's avatar
Kevin Hu committed
906
                wq = torch.cat([x[: n_head_each_rank[rank]] for rank, x in enumerate(xs)], dim=0)
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                wk = torch.cat(
                    [
                        x[
                            n_head_each_rank[rank] : n_head_each_rank[rank]
                            + n_head_kv_each_rank[rank]
                        ]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wv = torch.cat(
                    [
                        x[n_head_each_rank[rank] + n_head_kv_each_rank[rank] :]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wqkv = torch.cat(
                    [wq, wk, wv],
                    dim=0,
                )
Tri Dao's avatar
Tri Dao committed
928
                state_dict[key] = rearrange(
929
                    wqkv,
Tri Dao's avatar
Tri Dao committed
930
931
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )
Tri Dao's avatar
Tri Dao committed
932
933
934

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
935
936
            xs = [rearrange(s[key], "(two d) ... -> two d ...", two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), "two d ... -> (two d) ...")
Tri Dao's avatar
Tri Dao committed
937
938

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
Tri Dao's avatar
Tri Dao committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    combine_word_embeddings(
        state_dicts, state_dict, "transformer.embeddings.word_embeddings.weight"
    )
    if "lm_head.weight" in state_dict:
        combine_word_embeddings(state_dicts, state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        combine_dim(
            state_dicts, state_dict, "transformer.embeddings.position_embeddings.weight", -1
        )
    mlp_combine_fn = (
        combine_gated_mlp
        if config.activation_function in ["glu", "swiglu", "geglu"]
        else partial(combine_dim, dim=0)
    )
Tri Dao's avatar
Tri Dao committed
953
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", -1)
        mlp_combine_fn(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.bias", 0)
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc2.weight", -1)
Tri Dao's avatar
Tri Dao committed
960
961
962
963
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
964
965
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
966
967
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

968
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
969
    word_embeddings = state_dict.pop("wte.weight")
970
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
971
972
973
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
974
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
975
    )
Tri Dao's avatar
Tri Dao committed
976
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
977
978

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
979
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
980
981
        key = re.sub(r"^ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(r"^h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
Tri Dao's avatar
Tri Dao committed
982
        return key
Tri Dao's avatar
Tri Dao committed
983

Tri Dao's avatar
Tri Dao committed
984
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
985
986
987

    # MLP
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
988
989
990
991
992
        W1 = state_dict.pop(f"h.{d}.mlp.c_fc.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = W1.t()
        W2 = state_dict.pop(f"h.{d}.mlp.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()

993
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
994
995
        key = re.sub(r"^h.(\d+).mlp.c_fc.bias", r"transformer.layers.\1.mlp.fc1.bias", key)
        key = re.sub(r"^h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
996
        return key
Tri Dao's avatar
Tri Dao committed
997

998
999
1000
1001
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
1002
1003
1004
1005
1006
1007
        state_dict.pop(f"h.{d}.attn.bias")  # We don't store this bias
        Wqkv = state_dict.pop(f"h.{d}.attn.c_attn.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
        Wout = state_dict.pop(f"h.{d}.attn.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()

1008
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
1009
1010
1011
1012
        key = re.sub(r"^h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
        key = re.sub(
            r"^h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
        )
1013
        return key
Tri Dao's avatar
Tri Dao committed
1014

1015
1016
1017
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
1018
1019


Tri Dao's avatar
Tri Dao committed
1020
1021
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
Tri Dao's avatar
Tri Dao committed
1022
1023
        key = re.sub(r"^language_model.encoder.", "transformer.", key)
        key = re.sub(r"^language_model.", "transformer.", key)
Tri Dao's avatar
Tri Dao committed
1024
        return key
Tri Dao's avatar
Tri Dao committed
1025

Tri Dao's avatar
Tri Dao committed
1026
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
1027

Tri Dao's avatar
Tri Dao committed
1028
1029
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
1030
1031
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

Tri Dao's avatar
Tri Dao committed
1032
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
1033
    word_embeddings = state_dict.pop("transformer.embedding.word_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
1034
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
1035
1036
1037
1038
1039
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
1040
1041
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
Tri Dao's avatar
Tri Dao committed
1042
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
1043

Tri Dao's avatar
Tri Dao committed
1044
1045
    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        key = re.sub(r"^transformer.final_layernorm.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1057
        return key
Tri Dao's avatar
Tri Dao committed
1058

Tri Dao's avatar
Tri Dao committed
1059
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
1060

Tri Dao's avatar
Tri Dao committed
1061
1062
    # MLP
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1073
        return key
Tri Dao's avatar
Tri Dao committed
1074

Tri Dao's avatar
Tri Dao committed
1075
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
1076

Tri Dao's avatar
Tri Dao committed
1077
1078
    # Attention
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq",
            r"transformer.layers.\1.mixer.rotary_emb.inv_freq",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)",
            r"transformer.layers.\1.mixer.Wqkv.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.dense.(weight|bias)",
            r"transformer.layers.\1.mixer.out_proj.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1094
        return key
Tri Dao's avatar
Tri Dao committed
1095

Tri Dao's avatar
Tri Dao committed
1096
1097
1098
1099
1100
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
1101
1102
1103
1104
1105
1106
        Wqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = rearrange(
            Wqkv,
            "(nheads three headdim) ... -> (three nheads headdim) ...",
            three=3,
            headdim=headdim,
Tri Dao's avatar
Tri Dao committed
1107
        )
Tri Dao's avatar
Tri Dao committed
1108
1109
1110
        bqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = rearrange(
            bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
Tri Dao's avatar
Tri Dao committed
1111
        )
1112
1113

    return state_dict