gpt.py 33.5 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from einops import rearrange

19
from flash_attn.modules.mha import MHA, ParallelMHA
20
from flash_attn.modules.mlp import Mlp, FusedMLP, ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.block import Block, ParallelBlock
22
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
23
from flash_attn.utils.distributed import sync_shared_params, all_gather_raw
24
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
25
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
26
27
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.models.gptj import remap_state_dict_hf_gptj
Tri Dao's avatar
Tri Dao committed
28
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
29
30
31
32
33

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
34
35
36
37
38
39
40

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

try:
Tri Dao's avatar
Tri Dao committed
41
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense, sqrelu_fwd
Tri Dao's avatar
Tri Dao committed
42
43
except ImportError:
    FusedDenseSqreluDense = None
Tri Dao's avatar
Tri Dao committed
44
    sqrelu_fwd = None
Tri Dao's avatar
Tri Dao committed
45
46


47
48
49
logger = logging.getLogger(__name__)


50
51
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
57
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
58
59
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
60
61
    qkv_proj_bias = getattr(config, 'qkv_proj_bias', True)
    out_proj_bias = getattr(config, 'out_proj_bias', True)
Tri Dao's avatar
Tri Dao committed
62
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
Tri Dao's avatar
Tri Dao committed
63
64
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', None)
    rotary_emb_interleaved = getattr(config, 'rotary_emb_interleaved', False)
Tri Dao's avatar
Tri Dao committed
65
66
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
67
68
69
70
71
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
72
73
74
    parallel_kwargs = ({'process_group': process_group,
                        'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                       if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
75
76
77
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads,
                        qkv_proj_bias=qkv_proj_bias, out_proj_bias=out_proj_bias,
                        dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
78
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
Tri Dao's avatar
Tri Dao committed
79
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
80
                        rotary_emb_interleaved=rotary_emb_interleaved,
81
82
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
83
84
85
    return mixer_cls


86
87
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
88
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
89
90
91
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu']
Tri Dao's avatar
Tri Dao committed
92
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
93
94
95
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
96
    assert not (fused_dense_sqrelu_dense and fused_mlp)
97
    if process_group is not None:
98
99
        assert fused_mlp, 'Tensor Parallel is only implemented for FusedMLP'
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
100
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu']
Tri Dao's avatar
Tri Dao committed
101
102
        if config.activation_function == 'relu':
            activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
103
104
105
        elif config.activation_function == 'sqrelu':
            assert sqrelu_fwd is not None, 'sqrelu_fwd is not implemented'
            activation = sqrelu_fwd
Tri Dao's avatar
Tri Dao committed
106
        else:
107
108
            approximate = ('tanh' if config.activation_function
                           in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none')
Tri Dao's avatar
Tri Dao committed
109
110
            activation=partial(F.gelu, approximate=approximate)
        mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=activation, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
117
118
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
119
                raise ImportError('fused_dense is not installed')
120
121
122
            activation = ('gelu_approx' if config.activation_function
                          in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'relu')
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
123
124
125
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
126
127
            mlp_cls = partial(mlp_cls, hidden_features=inner_dim, activation=activation,
                              checkpoint_lvl=mlp_checkpoint_lvl,
128
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
129
130
131
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=inner_dim,
132
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


138
139
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
140
    sequence_parallel = getattr(config, 'sequence_parallel', True)
141
142
143
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
144
145
146
147
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
    residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
    prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    parallel_block = getattr(config, 'parallel_block', False)
    if not parallel_block:
        block = Block(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
    else:
        assert prenorm
        block = ParallelBlock(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, 'parallel_block_tied_norm', False),
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
Tri Dao's avatar
Tri Dao committed
169
170
171
172
    block.layer_idx = layer_idx
    return block


173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
189
190
    def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None,
                        world_size=1, rank=0, **kwargs):
191
192
193
194
195
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
196
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
197
198
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
199
        state_dict = state_dict_from_pretrained(
200
            model_name, device='cpu', dtype=dtype
201
        )
Tri Dao's avatar
Tri Dao committed
202
        if model_name.startswith('gpt2'):
Tri Dao's avatar
Tri Dao committed
203
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
204
        elif model_name.startswith('facebook/opt'):
Tri Dao's avatar
Tri Dao committed
205
206
207
208
            state_dict = remap_state_dict_hf_opt(state_dict, config)
        elif model_name.startswith('EleutherAI/gpt-j-'):
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
            strict = False  # We have rotary_emb.inf_freq buffers not in the GPT-J checkpoint
Tri Dao's avatar
Tri Dao committed
209
210
        elif model_name.startswith('EleutherAI/gpt-neox-'):
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
211
212
        else:
            raise NotImplementedError(f'Model {model_name} not supported')
213
214
215
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
216
217
218
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
219

Tri Dao's avatar
Tri Dao committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


242
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
243

244
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
245
        super().__init__(config)
246
247
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
248
        self.sequence_parallel = getattr(config, 'sequence_parallel', True)
249
250
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx',
                                              'relu', 'sqrelu']
251
252
253
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
254
255
256
257
258
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
        # These 2 options are for OPT-350m
        self.prenorm = getattr(config, 'prenorm', True)
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
Tri Dao's avatar
Tri Dao committed
259
260
        # For GPT-J, GPT-NeoX
        self.parallel_block = getattr(config, 'parallel_block', False)
Tri Dao's avatar
Tri Dao committed
261

262
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
263
264
265
266
            self.embeddings = GPT2Embeddings(
                config.hidden_size, vocab_size, config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs
            )
267
268
        else:
            self.embeddings = ParallelGPT2Embeddings(
269
                config.hidden_size, vocab_size, config.max_position_embeddings,
270
271
                process_group=process_group, sequence_parallel=self.sequence_parallel,
                **factory_kwargs
272
            )
Tri Dao's avatar
Tri Dao committed
273

Tri Dao's avatar
Tri Dao committed
274
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
275
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
276
277
278
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
279
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
280
281
282
283
        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
                                     for i in range(config.num_hidden_layers)])

Tri Dao's avatar
Tri Dao committed
284
285
286
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
287
288
289
290
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
            self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon,
                                    **factory_kwargs)
291
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
292
            for p in self.ln_f.parameters():
293
294
295
296
297
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
298

Tri Dao's avatar
Tri Dao committed
299
300
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
301
302
303
        self.tie_weights()

    def tie_weights(self):
304
        if self.process_group is not None:
305
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
306

Tri Dao's avatar
Tri Dao committed
307
    def forward(self, input_ids, position_ids=None, inference_params=None):
308
309
310
311
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
312
                            if self.process_group is not None and self.sequence_parallel else {})
313
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
314
315
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
316
        residual = None
317
318
        mixer_kwargs = ({'seqlen': input_ids.shape[1]}
                        if self.process_group is not None and self.sequence_parallel else {})
Tri Dao's avatar
Tri Dao committed
319
320
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
321
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
322
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
323
324
325
326
327
328
329
                if not self.parallel_block:
                    hidden_states, residual = layer(hidden_states, residual,
                                                    mixer_kwargs=mixer_kwargs)
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
330
331
332
333
334
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
335
336
337
338
339
340
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
                    residual = ((residual + dropped + dropped2)
                                if residual is not None else dropped + dropped2)
Tri Dao's avatar
Tri Dao committed
341
342
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
343
                assert not self.parallel_block
Tri Dao's avatar
Tri Dao committed
344
                # Set prenorm=False here since we don't need the residual
Tri Dao's avatar
Tri Dao committed
345
346
347
348
349
                hidden_states = dropout_add_layer_norm(
                    hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
                    self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
                    residual_in_fp32=self.residual_in_fp32
                )
Tri Dao's avatar
Tri Dao committed
350
351
352
        return hidden_states


Tri Dao's avatar
Tri Dao committed
353
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
354

355
356
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
357
        super().__init__(config)
358
359
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
360
        self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
Tri Dao's avatar
Tri Dao committed
361
        lm_head_bias = getattr(config, 'lm_head_bias', False)
362
363
364
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
365
366
367
368
369
370
371
        # This option is for OPT-350m
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
372
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
373
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
374
375
376
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
377
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
378
                embed_dim, vocab_size, process_group, bias=lm_head_bias,
379
380
                sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
381
382
383
384
385
386
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
387
388
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
389
        if self.process_group is not None:
390
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
391

Tri Dao's avatar
Tri Dao committed
392
393
394
395
396
397
398
    def forward(self, input_ids, position_ids=None, inference_params=None):
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
Tri Dao's avatar
Tri Dao committed
399
400
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
401
        lm_logits = self.lm_head(hidden_states)
402
403
404
405
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
            lm_logits = rearrange(lm_logits, '(n b) s d -> b s (n d)', b=hidden_states.shape[0])
Tri Dao's avatar
Tri Dao committed
406
407
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
408

Tri Dao's avatar
Tri Dao committed
409
410
411
412
413
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
        if 'transformer.ln_0.weight' in state_dict:
Tri Dao's avatar
Tri Dao committed
414
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight')
            ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias')
            state_dict['transformer.ln_f.weight'] = ln_weight
            state_dict['transformer.ln_f.bias'] = ln_bias
            for l in reversed(range(n_layers)):
                ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight')
                ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias')
                state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight
                state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias
                if l > 0:
                    ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight')
                    ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias')
                    state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight
                    state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias
            ln_weight = state_dict.pop('transformer.ln_0.weight')
            ln_bias = state_dict.pop('transformer.ln_0.bias')
            state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight
            state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias
        return super().load_state_dict(state_dict, strict=strict)

435

Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    def shard_first_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[0] // world_size
        state_dict[key] = x[rank * dim:(rank + 1) * dim]

    def shard_last_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[-1] // world_size
        state_dict[key] = x[..., rank * dim:(rank + 1) * dim]

    def shard_qkv_headdim(state_dict, key):
        x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3)
        dim = x.shape[1] // world_size
        state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim],
                                    'three d ... -> (three d) ...')

    shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        shard_first_dim(state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight')
    for i in range(config.num_hidden_layers):
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias')
    return state_dict


def combine_state_dicts_tp(state_dicts, config):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    # The word embeddings from Megatron are weird, for each shard only the first
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
        assert all(s[key].shape[0] == vocab_size for s in state_dicts)
        state_dict[key] = torch.cat([s[key][:vocab_size // world_size] for s in state_dicts], dim=0)

    def combine_dim(state_dicts, state_dict, key, dim=-1):
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)

    def combine_qkv_headdim(state_dicts, state_dict, key):
        xs = [rearrange(s[key], '(three d) ... -> three d ...', three=3) for s in state_dicts]
        state_dict[key] = rearrange(torch.cat(xs, dim=1), 'three d ... -> (three d) ...')

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
    combine_word_embeddings(state_dicts, state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        combine_word_embeddings(state_dicts, state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        combine_dim(state_dicts, state_dict, 'transformer.embeddings.position_embeddings.weight', -1)
    for i in range(config.num_hidden_layers):
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.out_proj.weight', -1)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.weight', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.bias', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc2.weight', -1)
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
525
526
527
528
529
530
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
531
532
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
533
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
534
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
535
536
537
538
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
539
540
541
542
543
    def key_mapping_ln(key):
        key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
571
572


Tri Dao's avatar
Tri Dao committed
573
574
575
576
577
578
579
580
581
582
583
584
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
        key = re.sub(r'^language_model.encoder.', 'transformer.', key)
        key = re.sub(r'^language_model.', 'transformer.', key)
        return key
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('transformer.embedding.word_embeddings.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
585
586
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
587
588
589
590
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
591

Tri Dao's avatar
Tri Dao committed
592
593
594
595
596
597
598
599
600
    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^transformer.final_layernorm.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^transformer.layers.(\d+).input_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
601

Tri Dao's avatar
Tri Dao committed
602
603
604
605
606
607
608
609
    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
610

Tri Dao's avatar
Tri Dao committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    # Attention
    def key_mapping_attn(key):
        key = re.sub(r'^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq',
                     r'transformer.layers.\1.mixer.rotary_emb.inv_freq', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)',
                     r'transformer.layers.\1.mixer.Wqkv.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.(weight|bias)',
                     r'transformer.layers.\1.mixer.out_proj.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
        Wqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = rearrange(
            Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
            three=3, headdim=headdim
        )
        bqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.bias')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.bias'] = rearrange(
            bqkv, '(nheads three headdim) -> (three nheads headdim)',
            three=3, headdim=headdim
        )
635
636

    return state_dict