gpt.py 45.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
from collections import OrderedDict, namedtuple
Tri Dao's avatar
Tri Dao committed
7
from collections.abc import Sequence
Tri Dao's avatar
Tri Dao committed
8
from functools import partial
Tri Dao's avatar
Tri Dao committed
9
10
11
12

import torch
import torch.nn as nn
import torch.nn.functional as F
13
from einops import rearrange
Tri Dao's avatar
Tri Dao committed
14
15
from transformers import GPT2Config

Tri Dao's avatar
Tri Dao committed
16
17
18
from flash_attn.models.falcon import remap_state_dict_hf_falcon
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
from flash_attn.models.gptj import remap_state_dict_hf_gptj
19
from flash_attn.models.llama import remap_state_dict_hf_llama
Tri Dao's avatar
Tri Dao committed
20
from flash_attn.models.opt import remap_state_dict_hf_opt
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.block import Block, ParallelBlock
22
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
Tri Dao's avatar
Tri Dao committed
23
from flash_attn.modules.mha import MHA, ParallelMHA
24
25
from flash_attn.modules.mlp import (FusedMLP, GatedMlp, Mlp, ParallelFusedMLP,
                                    ParallelGatedMlp, ParallelMLP)
Tri Dao's avatar
Tri Dao committed
26
from flash_attn.ops.activations import sqrelu_fwd
27
28
29
from flash_attn.utils.distributed import (all_gather_raw,
                                          get_dim_for_local_rank,
                                          sync_shared_params)
Tri Dao's avatar
Tri Dao committed
30
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
31
from flash_attn.utils.pretrained import state_dict_from_pretrained
32
33
34
35
36

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
37
38
39
40
41
42

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

43
try:
44
45
    from flash_attn.ops.layer_norm import \
        dropout_add_layer_norm_parallel_residual
46
47
48
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
49
50
51
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
52
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
53
54
55
56
57
58

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
59
try:
Tri Dao's avatar
Tri Dao committed
60
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
61
62
63
except ImportError:
    FusedDenseSqreluDense = None

64
65
66
logger = logging.getLogger(__name__)


67
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
68
69
    factory_kwargs = {"device": device, "dtype": dtype}
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
Tri Dao's avatar
Tri Dao committed
70
71
72
73
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
Tri Dao's avatar
Tri Dao committed
74
    dwconv = getattr(config, "attn_dwconv", False)
75
    if dwconv:
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80
81
82
83
84
        assert process_group is None, "TensorParallel MHA does not support dwconv yet"
    qkv_proj_bias = getattr(config, "qkv_proj_bias", True)
    out_proj_bias = getattr(config, "out_proj_bias", True)
    rotary_emb_dim = int(getattr(config, "rotary_emb_fraction", 0.0) * head_dim)
    rotary_emb_base = getattr(config, "rotary_emb_base", 10000.0)
    rotary_emb_scale_base = getattr(config, "rotary_emb_scale_base", None)
    rotary_emb_interleaved = getattr(config, "rotary_emb_interleaved", False)
    use_flash_attn = getattr(config, "use_flash_attn", False)
    fused_bias_fc = getattr(config, "fused_bias_fc", False)
85
    if not fused_bias_fc:
Tri Dao's avatar
Tri Dao committed
86
        assert process_group is None, "TensorParallel MHA requires fused_bias_fc"
87
    mha_cls = MHA if process_group is None else ParallelMHA
Tri Dao's avatar
Tri Dao committed
88
89
90
91
92
93
94
95
96
97
98
    serial_kwargs = (
        {"fused_bias_fc": fused_bias_fc, "dwconv": dwconv} if process_group is None else {}
    )
    parallel_kwargs = (
        {
            "process_group": process_group,
            "sequence_parallel": getattr(config, "sequence_parallel", True),
        }
        if process_group is not None
        else {}
    )
Tri Dao's avatar
Tri Dao committed
99
    num_heads_kv = getattr(config, "n_head_kv", None)
Tri Dao's avatar
Tri Dao committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    mixer_cls = partial(
        mha_cls,
        num_heads=config.num_attention_heads,
        num_heads_kv=num_heads_kv,
        qkv_proj_bias=qkv_proj_bias,
        out_proj_bias=out_proj_bias,
        dropout=config.attn_pdrop,
        softmax_scale=softmax_scale,
        causal=True,
        layer_idx=layer_idx,
        rotary_emb_dim=rotary_emb_dim,
        rotary_emb_base=rotary_emb_base,
        rotary_emb_scale_base=rotary_emb_scale_base,
        rotary_emb_interleaved=rotary_emb_interleaved,
        use_flash_attn=use_flash_attn,
        **serial_kwargs,
        **parallel_kwargs,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
119
120
121
    return mixer_cls


122
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
123
124
125
126
    factory_kwargs = {"device": device, "dtype": dtype}
    mlp_fc1_bias = getattr(config, "mlp_fc1_bias", True)
    mlp_fc2_bias = getattr(config, "mlp_fc2_bias", True)
    fused_mlp = getattr(config, "fused_mlp", False)
127
    if fused_mlp:
Tri Dao's avatar
Tri Dao committed
128
129
130
131
132
133
134
135
        assert config.activation_function in [
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
            "relu",
            "sqrelu",
        ]
    fused_dense_sqrelu_dense = getattr(config, "fused_dense_sqrelu_dense", False)
136
    if fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
137
138
139
        assert config.activation_function == "sqrelu", (
            "fused_dense_sqrelu_dense only " "supports approximate activation_function sqrelu"
        )
140
141
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            activation = (
                F.sigmoid
                if config.activation_function == "glu"
                else (F.silu if config.activation_function == "swiglu" else F.gelu)
            )
159
            mlp_cls = GatedMlp if process_group is None else ParallelGatedMlp
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
177
        else:
Tri Dao's avatar
Tri Dao committed
178
            if config.activation_function == "relu":
Tri Dao's avatar
Tri Dao committed
179
                activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
180
            elif config.activation_function == "sqrelu":
Tri Dao's avatar
Tri Dao committed
181
182
                activation = sqrelu_fwd
            else:
Tri Dao's avatar
Tri Dao committed
183
184
185
186
187
188
                approximate = (
                    "tanh"
                    if config.activation_function in ["gelu_new", "gelu_fast", "gelu_approx"]
                    else "none"
                )
                activation = partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
189
            mlp_cls = Mlp if process_group is None else ParallelMLP
Tri Dao's avatar
Tri Dao committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
207
    else:
Tri Dao's avatar
Tri Dao committed
208
        mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
Tri Dao's avatar
Tri Dao committed
209
210
211
212
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
213
214
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
215
216
217
218
219
220
                raise ImportError("fused_dense is not installed")
            activation = (
                "gelu_approx"
                if config.activation_function in ["gelu_new", "gelu_fast", "gelu_approx"]
                else config.activation_function
            )
221
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                checkpoint_lvl=mlp_checkpoint_lvl,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
240
        elif fused_dense_sqrelu_dense:
241
            if process_group is not None:
Tri Dao's avatar
Tri Dao committed
242
                assert fused_mlp, "Tensor Parallel is not implemented for FusedDenseSqreluDense"
Tri Dao's avatar
Tri Dao committed
243
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
244
245
246
247
248
249
            mlp_cls = partial(
                FusedDenseSqreluDense,
                hidden_features=config.n_inner,
                checkpoint_lvl=mlp_checkpoint_lvl,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
250
        else:
Tri Dao's avatar
Tri Dao committed
251
            raise RuntimeError("MLP type not supported")
Tri Dao's avatar
Tri Dao committed
252
253
254
    return mlp_cls


255
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
256
257
    factory_kwargs = {"device": device, "dtype": dtype}
    sequence_parallel = getattr(config, "sequence_parallel", True)
258
259
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
260
261
262
263
264
265
    use_rms_norm = getattr(config, "rms_norm", False)
    norm_cls = partial(
        nn.LayerNorm if not use_rms_norm else RMSNorm,
        eps=config.layer_norm_epsilon,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
266
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
267
    residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
268
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
Tri Dao's avatar
Tri Dao committed
269
270
    prenorm = getattr(config, "prenorm", True)
    parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
271
272
    if not parallel_block:
        block = Block(
Tri Dao's avatar
Tri Dao committed
273
274
275
276
277
278
279
280
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            prenorm=prenorm,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
281
282
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
283
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
284
285
286
287
        )
    else:
        assert prenorm
        block = ParallelBlock(
Tri Dao's avatar
Tri Dao committed
288
289
290
291
292
293
294
295
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, "parallel_block_tied_norm", False),
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
296
297
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
298
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
299
        )
Tri Dao's avatar
Tri Dao committed
300
301
302
303
    block.layer_idx = layer_idx
    return block


304
class GPTPreTrainedModel(nn.Module):
Tri Dao's avatar
Tri Dao committed
305
306
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
307
    """
Tri Dao's avatar
Tri Dao committed
308

309
310
311
312
313
314
315
316
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
Tri Dao's avatar
Tri Dao committed
317
318
                )
            )
319
320
321
        self.config = config

    @classmethod
Tri Dao's avatar
Tri Dao committed
322
323
324
325
326
327
328
329
330
331
332
333
    def from_pretrained(
        cls,
        model_name,
        config,
        *args,
        strict=True,
        device=None,
        dtype=None,
        world_size=1,
        rank=0,
        **kwargs,
    ):
334
335
336
337
338
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
339
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
340
341
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
342
343
        state_dict = state_dict_from_pretrained(model_name, device="cpu", dtype=dtype)
        if model_name.startswith("gpt2"):
Tri Dao's avatar
Tri Dao committed
344
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
345
        elif model_name.startswith("facebook/opt"):
Tri Dao's avatar
Tri Dao committed
346
            state_dict = remap_state_dict_hf_opt(state_dict, config)
Tri Dao's avatar
Tri Dao committed
347
        elif model_name.startswith("EleutherAI/gpt-j-"):
Tri Dao's avatar
Tri Dao committed
348
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
Tri Dao's avatar
Tri Dao committed
349
        elif model_name.startswith("EleutherAI/gpt-neox-"):
Tri Dao's avatar
Tri Dao committed
350
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
351
        elif model_name.startswith("tiiuae/falcon-"):
Tri Dao's avatar
Tri Dao committed
352
            state_dict = remap_state_dict_hf_falcon(state_dict, config)
353
354
        elif model_name.startswith("meta-llama/Llama-"):
            state_dict = remap_state_dict_hf_llama(state_dict, config)
Tri Dao's avatar
Tri Dao committed
355
        else:
Tri Dao's avatar
Tri Dao committed
356
            raise NotImplementedError(f"Model {model_name} not supported")
357
358
359
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
360
361
362
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
363

Tri Dao's avatar
Tri Dao committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


386
class GPTModel(GPTPreTrainedModel):
387
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
388
        super().__init__(config)
Tri Dao's avatar
Tri Dao committed
389
        factory_kwargs = {"device": device, "dtype": dtype}
390
        self.process_group = process_group
Tri Dao's avatar
Tri Dao committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        self.sequence_parallel = getattr(config, "sequence_parallel", True)
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
407
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
408
        self.residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
409
        # These 2 options are for OPT-350m
Tri Dao's avatar
Tri Dao committed
410
411
412
        self.prenorm = getattr(config, "prenorm", True)
        use_rms_norm = getattr(config, "rms_norm", False)
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
413
        # For GPT-J, GPT-NeoX
Tri Dao's avatar
Tri Dao committed
414
        self.parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
415

416
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
417
            self.embeddings = GPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
418
419
420
421
422
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim,
                **factory_kwargs,
Tri Dao's avatar
Tri Dao committed
423
            )
424
425
        else:
            self.embeddings = ParallelGPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
426
427
428
429
430
431
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                process_group=process_group,
                sequence_parallel=self.sequence_parallel,
                **factory_kwargs,
432
            )
Tri Dao's avatar
Tri Dao committed
433

Tri Dao's avatar
Tri Dao committed
434
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
435
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
436
437
438
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
439
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
440
441
442
443
444
445
        self.layers = nn.ModuleList(
            [
                create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
                for i in range(config.num_hidden_layers)
            ]
        )
Tri Dao's avatar
Tri Dao committed
446

Tri Dao's avatar
Tri Dao committed
447
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
448
        if self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
449
450
451
452
            if (not self.parallel_block and dropout_add_layer_norm is None) or (
                self.parallel_block and dropout_add_layer_norm_parallel_residual is None
            ):
                raise ImportError("dropout_layer_norm is not installed")
Tri Dao's avatar
Tri Dao committed
453
454
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
455
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
Tri Dao's avatar
Tri Dao committed
456
457
458
            self.ln_f = norm_cls(
                config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs
            )
459
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
460
            for p in self.ln_f.parameters():
461
462
463
464
465
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
466

Tri Dao's avatar
Tri Dao committed
467
468
469
470
471
472
473
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
474
475
476
        self.tie_weights()

    def tie_weights(self):
477
        if self.process_group is not None:
478
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
479

480
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
481
482
483
484
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }
485

Tri Dao's avatar
Tri Dao committed
486
    def forward(self, input_ids, position_ids=None, inference_params=None):
487
488
489
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
Tri Dao's avatar
Tri Dao committed
490
491
492
493
494
        embedding_kwargs = (
            {"combine_batch_seqlen_dim": True}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
495
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
496
497
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
498
        residual = None
Tri Dao's avatar
Tri Dao committed
499
500
501
502
503
        mixer_kwargs = (
            {"seqlen": input_ids.shape[1]}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
Tri Dao's avatar
Tri Dao committed
504
        if inference_params is not None:
Tri Dao's avatar
Tri Dao committed
505
            mixer_kwargs["inference_params"] = inference_params
Tri Dao's avatar
Tri Dao committed
506
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
507
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
508
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
509
510
511
                    hidden_states, residual = layer(
                        hidden_states, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
512
513
514
515
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
516
517
518
519
520
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
521
522
523
524
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
Tri Dao's avatar
Tri Dao committed
525
526
527
528
529
                    residual = (
                        (residual + dropped + dropped2)
                        if residual is not None
                        else dropped + dropped2
                    )
Tri Dao's avatar
Tri Dao committed
530
531
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
532
                # Set prenorm=False here since we don't need the residual
533
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
534
535
536
537
538
                    fused_add_norm_fn = (
                        dropout_add_rms_norm
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm
                    )
539
                    hidden_states = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
540
541
542
543
544
545
546
547
                        hidden_states,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
548
549
                    )
                else:
Tri Dao's avatar
Tri Dao committed
550
551
552
553
554
                    fused_add_norm_fn = (
                        dropout_add_rms_norm_parallel_residual
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm_parallel_residual
                    )
555
                    hidden_states, _ = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
556
557
558
559
560
561
562
563
564
565
566
                        hidden_states,
                        hidden_states2,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        None,
                        None,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
567
                    )
Tri Dao's avatar
Tri Dao committed
568
569
570
        return hidden_states


Tri Dao's avatar
Tri Dao committed
571
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
572
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
573
        factory_kwargs = {"device": device, "dtype": dtype}
574
        super().__init__(config)
575
576
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
577
578
579
580
581
582
        self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
        lm_head_bias = getattr(config, "lm_head_bias", False)
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
583
        # This option is for OPT-350m
Tri Dao's avatar
Tri Dao committed
584
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
585
586
587
588
589
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
590
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
591
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
592
593
        else:
            if ColumnParallelLinear is None:
Tri Dao's avatar
Tri Dao committed
594
                raise ImportError("fused_dense_lib is not installed")
595
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
596
597
598
599
600
601
                embed_dim,
                vocab_size,
                process_group,
                bias=lm_head_bias,
                sequence_parallel=getattr(config, "sequence_parallel", True),
                **factory_kwargs,
602
            )
Tri Dao's avatar
Tri Dao committed
603
        # Initialize weights and apply final processing
Tri Dao's avatar
Tri Dao committed
604
605
606
607
608
609
610
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
Tri Dao's avatar
Tri Dao committed
611
612
613
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
614
615
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
616
        if self.process_group is not None:
617
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
618

619
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
620
621
622
        return self.transformer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )
623

624
    def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
Tri Dao's avatar
Tri Dao committed
625
        """
626
        input_ids: (batch, seqlen) int tensor
Tri Dao's avatar
Tri Dao committed
627
628
        inference_params: for generation. Adapted from Megatron-LM (and Apex)
        https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
629
        num_last_tokens: if > 0, only return the logits for the last n tokens
Tri Dao's avatar
Tri Dao committed
630
        """
631
632
        assert input_ids.ndim == 2, f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
        b, slen = input_ids.shape
Tri Dao's avatar
Tri Dao committed
633
634
635
        hidden_states = self.transformer(
            input_ids, position_ids=position_ids, inference_params=inference_params
        )
636
        assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
Tri Dao's avatar
Tri Dao committed
637
638
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
639
        lm_logits = self.lm_head(hidden_states)
640
641
642
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
643
            lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
Tri Dao's avatar
Tri Dao committed
644
        CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
Tri Dao's avatar
Tri Dao committed
645
        return CausalLMOutput(logits=lm_logits)
646

Tri Dao's avatar
Tri Dao committed
647
648
649
650
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
Tri Dao's avatar
Tri Dao committed
651
        if "transformer.ln_0.weight" in state_dict:
Tri Dao's avatar
Tri Dao committed
652
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
653
654
655
656
            ln_weight = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.weight")
            ln_bias = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.bias")
            state_dict["transformer.ln_f.weight"] = ln_weight
            state_dict["transformer.ln_f.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
657
            for l in reversed(range(n_layers)):
Tri Dao's avatar
Tri Dao committed
658
659
660
661
                ln_weight = state_dict.pop(f"transformer.layers.{l}.norm1.weight")
                ln_bias = state_dict.pop(f"transformer.layers.{l}.norm1.bias")
                state_dict[f"transformer.layers.{l}.norm2.weight"] = ln_weight
                state_dict[f"transformer.layers.{l}.norm2.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
662
                if l > 0:
Tri Dao's avatar
Tri Dao committed
663
664
665
666
667
668
669
670
                    ln_weight = state_dict.pop(f"transformer.layers.{l - 1}.norm2.weight")
                    ln_bias = state_dict.pop(f"transformer.layers.{l - 1}.norm2.bias")
                    state_dict[f"transformer.layers.{l}.norm1.weight"] = ln_weight
                    state_dict[f"transformer.layers.{l}.norm1.bias"] = ln_bias
            ln_weight = state_dict.pop("transformer.ln_0.weight")
            ln_bias = state_dict.pop("transformer.ln_0.bias")
            state_dict[f"transformer.layers.0.norm1.weight"] = ln_weight
            state_dict[f"transformer.layers.0.norm1.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
671
672
        return super().load_state_dict(state_dict, strict=strict)

673

Tri Dao's avatar
Tri Dao committed
674
675
676
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
677
678

    This function modifies state_dict in place.
Tri Dao's avatar
Tri Dao committed
679
    """
Tri Dao's avatar
Tri Dao committed
680
681
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
682
683
684
685
686
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

687
688
689
690
691
692
    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

Tri Dao's avatar
Tri Dao committed
693
    def shard_first_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
694
695
696
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size
Tri Dao's avatar
Tri Dao committed
697
            state_dict[key] = x[rank * dim : (rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
698

699
    def shard_last_dim(state_dict, key, multiple_of=1):
Tri Dao's avatar
Tri Dao committed
700
701
        if key in state_dict:
            x = state_dict[key]
702
703
704
705
706
707
            dim_each_rank = [
                get_dim_for_local_rank(x.size(-1), world_size, local_rank, multiple_of)
                for local_rank in range(world_size)
            ]
            beg, end = tuple(sum(dim_each_rank[:pos]) for pos in (rank, rank + 1))
            state_dict[key] = x[..., beg:end]
Tri Dao's avatar
Tri Dao committed
708

Tri Dao's avatar
Tri Dao committed
709
710
711
712
713
    def shard_gatedmlp_fc1_dim(state_dict, key):
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size // 2
            state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
714
                rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim : (rank + 1) * dim],
Tri Dao's avatar
Tri Dao committed
715
                "two o ... -> (two o) ...",
Tri Dao's avatar
Tri Dao committed
716
717
            )

Tri Dao's avatar
Tri Dao committed
718
    def shard_qkv_headdim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
719
        if key in state_dict:
720
            n_head_each_rank = [
Tri Dao's avatar
Tri Dao committed
721
722
                get_dim_for_local_rank(n_head, world_size, local_rank)
                for local_rank in range(world_size)
723
724
            ]
            n_head_kv_each_rank = [
Tri Dao's avatar
Tri Dao committed
725
726
                get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                for local_rank in range(world_size)
727
728
729
730
731
732
733
734
            ]

            beg_n_head = sum(n_head_each_rank[:rank])
            end_n_head = sum(n_head_each_rank[: rank + 1])

            beg_n_head_kv = sum(n_head_kv_each_rank[:rank])
            end_n_head_kv = sum(n_head_kv_each_rank[: rank + 1])

Tri Dao's avatar
Tri Dao committed
735
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
736
737
                x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3)
                state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
738
739
                    x[:, beg_n_head * head_dim : end_n_head * head_dim],
                    "three d ... -> (three d) ...",
Tri Dao's avatar
Tri Dao committed
740
                )
Tri Dao's avatar
Tri Dao committed
741
            else:
Tri Dao's avatar
Tri Dao committed
742
743
744
745
746
747
748
749
                x = rearrange(
                    state_dict[key],
                    "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                    nheadqkv=n_head + 2 * n_head_kv,
                )
                state_dict[key] = rearrange(
                    torch.cat(
                        [
750
                            x[beg_n_head:end_n_head],
Tri Dao's avatar
Tri Dao committed
751
752
753
754
755
756
757
758
                            x[n_head + beg_n_head_kv : n_head + end_n_head_kv],
                            x[
                                n_head
                                + n_head_kv
                                + beg_n_head_kv : n_head
                                + n_head_kv
                                + end_n_head_kv
                            ],
Tri Dao's avatar
Tri Dao committed
759
760
761
762
763
764
765
766
767
768
769
                        ],
                        dim=0,
                    ),
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )

    shard_first_dim(state_dict, "transformer.embeddings.word_embeddings.weight")
    if "lm_head.weight" in state_dict:
        shard_first_dim(state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        shard_last_dim(state_dict, "transformer.embeddings.position_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
770
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
771
772
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
773
774
775
        shard_last_dim(
            state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", multiple_of=head_dim
        )
Tri Dao's avatar
Tri Dao committed
776
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
777
            state_dict.pop(f"transformer.layers.{i}.mixer.out_proj.bias", None)
Tri Dao's avatar
Tri Dao committed
778
        if config.activation_function in ["glu", "swiglu", "geglu"]:
Tri Dao's avatar
Tri Dao committed
779
780
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
Tri Dao's avatar
Tri Dao committed
781
        else:
Tri Dao's avatar
Tri Dao committed
782
783
784
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
        shard_last_dim(state_dict, f"transformer.layers.{i}.mlp.fc2.weight")
Tri Dao's avatar
Tri Dao committed
785
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
786
            state_dict.pop(f"transformer.layers.{i}.mlp.fc2.bias", None)
Tri Dao's avatar
Tri Dao committed
787
788
789
    return state_dict


790
791
792
def combine_state_dicts_tp(state_dicts: list[dict[str, torch.Tensor]], config: GPT2Config):
    """Convert the list of sharded state_dict of a GPT model with tensor parallel to
    the state_dict of a standard GPT model.
793
794

    This function is meant to be the "reverse" of shard_state_dict_tp.
795
796
797

    Precondition:
        - state_dicts should be ordered in the same way as the shards were created.
Tri Dao's avatar
Tri Dao committed
798
799
800
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
Tri Dao's avatar
Tri Dao committed
801
802
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
803
804
805
806
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0
807
808
    assert config.hidden_size % config.n_head == 0
    headdim = config.hidden_size // config.n_head
Tri Dao's avatar
Tri Dao committed
809

Tri Dao's avatar
Tri Dao committed
810
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
811
812
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
813
814
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
815
816

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
817
818
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
819
820

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
821
        n_head = config.n_head
Tri Dao's avatar
Tri Dao committed
822
        n_head_kv = getattr(config, "n_head_kv", n_head)
Tri Dao's avatar
Tri Dao committed
823
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
824
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
825
826
827
828
                xs = [
                    rearrange(s[key], "(three d) ... -> three d ...", three=3) for s in state_dicts
                ]
                state_dict[key] = rearrange(torch.cat(xs, dim=1), "three d ... -> (three d) ...")
Tri Dao's avatar
Tri Dao committed
829
            else:
830
831
832
833
834
835
836
837
                n_head_each_rank = [
                    get_dim_for_local_rank(n_head, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
                n_head_kv_each_rank = [
                    get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
                xs = [
                    rearrange(
                        s[key],
                        "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                        nheadqkv=rank_n_head + 2 * rank_n_head_kv,
                        headdim=headdim,
                    )
                    for s, rank_n_head, rank_n_head_kv in zip(state_dicts, n_head_each_rank, n_head_kv_each_rank)
                ]
                wq = torch.cat(
                    [x[: n_head_each_rank[rank]] for rank, x in enumerate(xs)], dim=0
                )
                wk = torch.cat(
                    [
                        x[
                            n_head_each_rank[rank] : n_head_each_rank[rank]
                            + n_head_kv_each_rank[rank]
                        ]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wv = torch.cat(
                    [
                        x[n_head_each_rank[rank] + n_head_kv_each_rank[rank] :]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wqkv = torch.cat(
                    [wq, wk, wv],
                    dim=0,
                )
Tri Dao's avatar
Tri Dao committed
871
                state_dict[key] = rearrange(
872
                    wqkv,
Tri Dao's avatar
Tri Dao committed
873
874
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )
Tri Dao's avatar
Tri Dao committed
875
876
877

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
878
879
            xs = [rearrange(s[key], "(two d) ... -> two d ...", two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), "two d ... -> (two d) ...")
Tri Dao's avatar
Tri Dao committed
880
881

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
Tri Dao's avatar
Tri Dao committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    combine_word_embeddings(
        state_dicts, state_dict, "transformer.embeddings.word_embeddings.weight"
    )
    if "lm_head.weight" in state_dict:
        combine_word_embeddings(state_dicts, state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        combine_dim(
            state_dicts, state_dict, "transformer.embeddings.position_embeddings.weight", -1
        )
    mlp_combine_fn = (
        combine_gated_mlp
        if config.activation_function in ["glu", "swiglu", "geglu"]
        else partial(combine_dim, dim=0)
    )
Tri Dao's avatar
Tri Dao committed
896
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
897
898
899
900
901
902
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", -1)
        mlp_combine_fn(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.bias", 0)
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc2.weight", -1)
Tri Dao's avatar
Tri Dao committed
903
904
905
906
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
907
908
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
909
910
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

911
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
912
    word_embeddings = state_dict.pop("wte.weight")
913
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
914
915
916
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
917
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
918
    )
Tri Dao's avatar
Tri Dao committed
919
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
920
921

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
922
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
923
924
        key = re.sub(r"^ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(r"^h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
Tri Dao's avatar
Tri Dao committed
925
        return key
Tri Dao's avatar
Tri Dao committed
926

Tri Dao's avatar
Tri Dao committed
927
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
928
929
930

    # MLP
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
        W1 = state_dict.pop(f"h.{d}.mlp.c_fc.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = W1.t()
        W2 = state_dict.pop(f"h.{d}.mlp.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()

936
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
937
938
        key = re.sub(r"^h.(\d+).mlp.c_fc.bias", r"transformer.layers.\1.mlp.fc1.bias", key)
        key = re.sub(r"^h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
939
        return key
Tri Dao's avatar
Tri Dao committed
940

941
942
943
944
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
945
946
947
948
949
950
        state_dict.pop(f"h.{d}.attn.bias")  # We don't store this bias
        Wqkv = state_dict.pop(f"h.{d}.attn.c_attn.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
        Wout = state_dict.pop(f"h.{d}.attn.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()

951
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
952
953
954
955
        key = re.sub(r"^h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
        key = re.sub(
            r"^h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
        )
956
        return key
Tri Dao's avatar
Tri Dao committed
957

958
959
960
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
961
962


Tri Dao's avatar
Tri Dao committed
963
964
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
Tri Dao's avatar
Tri Dao committed
965
966
        key = re.sub(r"^language_model.encoder.", "transformer.", key)
        key = re.sub(r"^language_model.", "transformer.", key)
Tri Dao's avatar
Tri Dao committed
967
        return key
Tri Dao's avatar
Tri Dao committed
968

Tri Dao's avatar
Tri Dao committed
969
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
970

Tri Dao's avatar
Tri Dao committed
971
972
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
973
974
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

Tri Dao's avatar
Tri Dao committed
975
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
976
    word_embeddings = state_dict.pop("transformer.embedding.word_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
977
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
978
979
980
981
982
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
983
984
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
Tri Dao's avatar
Tri Dao committed
985
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
986

Tri Dao's avatar
Tri Dao committed
987
988
    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
989
990
991
992
993
994
995
996
997
998
999
        key = re.sub(r"^transformer.final_layernorm.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1000
        return key
Tri Dao's avatar
Tri Dao committed
1001

Tri Dao's avatar
Tri Dao committed
1002
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
1003

Tri Dao's avatar
Tri Dao committed
1004
1005
    # MLP
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1016
        return key
Tri Dao's avatar
Tri Dao committed
1017

Tri Dao's avatar
Tri Dao committed
1018
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
1019

Tri Dao's avatar
Tri Dao committed
1020
1021
    # Attention
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq",
            r"transformer.layers.\1.mixer.rotary_emb.inv_freq",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)",
            r"transformer.layers.\1.mixer.Wqkv.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.dense.(weight|bias)",
            r"transformer.layers.\1.mixer.out_proj.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1037
        return key
Tri Dao's avatar
Tri Dao committed
1038

Tri Dao's avatar
Tri Dao committed
1039
1040
1041
1042
1043
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
1044
1045
1046
1047
1048
1049
        Wqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = rearrange(
            Wqkv,
            "(nheads three headdim) ... -> (three nheads headdim) ...",
            three=3,
            headdim=headdim,
Tri Dao's avatar
Tri Dao committed
1050
        )
Tri Dao's avatar
Tri Dao committed
1051
1052
1053
        bqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = rearrange(
            bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
Tri Dao's avatar
Tri Dao committed
1054
        )
1055
1056

    return state_dict