"...tasks/mmlu/generative/mmlu_electrical_engineering.yaml" did not exist on "104292fff7b380e51e337b9b6e9b42764a6fe874"
gpt.py 17.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
# Copyright (c) 2022, Tri Dao.

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from flash_attn.modules.mha import MHA, ParallelMHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense, ParallelFusedDenseGeluDense
Tri Dao's avatar
Tri Dao committed
19
from flash_attn.modules.block import Block
20
21
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
from flash_attn.utils.distributed import sync_sequence_parallel_params
22
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
23
from flash_attn.utils.generation import GenerationMixin
24
25
26
27
28

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
29
30
31
32
33
34
35
36
37
38
39
40

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

try:
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
except ImportError:
    FusedDenseSqreluDense = None


41
42
43
logger = logging.getLogger(__name__)


44
45
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
46
47
48
49
50
51
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
52
53
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
54
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
Tri Dao's avatar
Tri Dao committed
55
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', 0)
Tri Dao's avatar
Tri Dao committed
56
57
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
58
59
60
61
62
63
64
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
    parallel_kwargs = {'process_group': process_group} if process_group is not None else {}
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads, dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
65
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
Tri Dao's avatar
Tri Dao committed
66
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_scale_base=rotary_emb_scale_base,
67
68
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
69
70
71
    return mixer_cls


72
73
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
74
75
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    fused_dense_gelu_dense = getattr(config, 'fused_dense_gelu_dense', False)
76
77
78
    if fused_dense_gelu_dense:
        assert config.activation_function in ['gelu_new', 'gelu_fast'], ('fused_dense_gelu_dense only '
                                                                'supports approximate gelu')
Tri Dao's avatar
Tri Dao committed
79
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
80
81
82
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
Tri Dao's avatar
Tri Dao committed
83
    assert not (fused_dense_sqrelu_dense and fused_dense_gelu_dense)
84
85
    if process_group is not None:
        assert fused_dense_gelu_dense, 'Tensor Parallel is only implemented for FusedDenseGeluDense'
Tri Dao's avatar
Tri Dao committed
86
    if not fused_dense_gelu_dense and not fused_dense_sqrelu_dense:
87
        approximate = 'tanh' if config.activation_function in ['gelu_new', 'gelu_fast'] else 'none'
Tri Dao's avatar
Tri Dao committed
88
        mlp_cls = partial(Mlp, hidden_features=inner_dim,
89
                          activation=partial(F.gelu, approximate=approximate), **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
90
91
92
93
94
95
96
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
        if fused_dense_gelu_dense:
Tri Dao's avatar
Tri Dao committed
97
98
            if FusedDenseGeluDense is None:
                raise ImportError('fused_dense is not installed')
99
100
101
102
            mlp_cls = FusedDenseGeluDense if process_group is None else ParallelFusedDenseGeluDense
            parallel_kwargs = {'process_group': process_group} if process_group is not None else {}
            mlp_cls = partial(mlp_cls, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl,
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
103
104
105
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=inner_dim,
106
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
107
108
109
110
111
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


112
113
114
115
116
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
117
118
    block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
                  prenorm=True, resid_dropout=config.resid_pdrop,
119
120
                  fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
                  sequence_parallel=process_group is not None)
Tri Dao's avatar
Tri Dao committed
121
122
123
124
    block.layer_idx = layer_idx
    return block


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config, *inputs, **kwargs):
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        load_return = model.load_state_dict(
            remap_state_dict_gpt2(state_dict_from_pretrained(model_name), config))
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


175
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
176

177
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
178
        super().__init__(config)
179
180
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
181
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'sqrelu']
182
183
184
185
        self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += (self.pad_vocab_size_multiple
                                  - (config.vocab_size % self.pad_vocab_size_multiple))
Tri Dao's avatar
Tri Dao committed
186

187
188
189
190
191
192
193
194
        if process_group is None:
            self.embeddings = GPT2Embeddings(config.hidden_size, config.vocab_size,
                                             config.max_position_embeddings, **factory_kwargs)
        else:
            self.embeddings = ParallelGPT2Embeddings(
                config.hidden_size, config.vocab_size, config.max_position_embeddings,
                process_group=process_group, **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
195
196
197
198
199
200
201
202
203
204
205
206
207
        self.emb_drop = nn.Dropout(config.embd_pdrop)

        # We change the order of residual and layer norm:
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
        # Attn / MLP -> Dropout -> Add -> LN, returning both the residual branch (output of Add) and
        # the main branch (output of LN). The model definition is unchanged, but the mapping of the
        # nn.LayerNorm weights are changed.
        # This is for performance reason: we can fuse dropout + add + layer_norm.
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
        # self.ln_0 is the first layer norm in the model, while self.ln_f (in the pretrained weight)
        # is the final layer norm.
208
209
210
211
212
213
214
215
216
        self.ln_0 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon,
                                 **factory_kwargs)
        # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
        if process_group is not None:
            for p in self.ln_0.parameters():
                p._sequence_parallel = True

        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
217
218
219
220
                                     for i in range(config.num_hidden_layers)])

        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
221
222
        if self.process_group is not None:
            sync_sequence_parallel_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
223

Tri Dao's avatar
Tri Dao committed
224
    def forward(self, input_ids, position_ids=None, inference_params=None):
225
226
227
228
229
230
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
                            if self.process_group is not None else {})
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
231
232
233
234
235
236
237
238
239
240
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        if not self.fused_dropout_add_ln:
            residual = self.emb_drop(hidden_states).float()
            hidden_states = self.ln_0(residual.to(dtype=self.ln_0.weight.dtype))
        else:
            hidden_states, residual = dropout_add_layer_norm(
                hidden_states, None, self.ln_0.weight, self.ln_0.bias,
                self.emb_drop.p if self.training else 0.0, self.ln_0.eps, prenorm=True,
                residual_in_fp32=True
            )
241
        mixer_kwargs = ({'seqlen': input_ids.shape[1]} if self.process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
242
243
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
244
        for layer in self.layers:
245
            hidden_states, residual = layer(hidden_states, residual, mixer_kwargs=mixer_kwargs)
Tri Dao's avatar
Tri Dao committed
246
247
248
        return hidden_states


Tri Dao's avatar
Tri Dao committed
249
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
250

251
252
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
253
        super().__init__(config)
254
255
256
257
258
259
260
261
262
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
        if process_group is None:
            self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False, **factory_kwargs)
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
            self.lm_head = ColumnParallelLinear(config.n_embd, config.vocab_size, process_group,
                                                bias=False, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
263
264
265
266
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()
267
268
        if self.process_group is not None:
            sync_sequence_parallel_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
269
270
271
272

    def tie_weights(self):
        self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight

Tri Dao's avatar
Tri Dao committed
273
274
275
276
277
278
279
    def forward(self, input_ids, position_ids=None, inference_params=None):
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
Tri Dao's avatar
Tri Dao committed
280
281
282
        lm_logits = self.lm_head(hidden_states)
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340


def remap_state_dict_gpt2(state_dict, config):
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
    ln_weight, ln_bias = state_dict.pop('ln_f.weight'), state_dict.pop('ln_f.bias')
    state_dict[f'transformer.layers.{config.num_hidden_layers - 1}.norm2.weight'] = ln_weight
    state_dict[f'transformer.layers.{config.num_hidden_layers - 1}.norm2.bias'] = ln_bias
    ln_weight, ln_bias = state_dict.pop('h.0.ln_1.weight'), state_dict.pop('h.0.ln_1.bias')
    state_dict['transformer.ln_0.weight'] = ln_weight
    state_dict['transformer.ln_0.bias'] = ln_bias
    for d in range(config.num_hidden_layers):
        ln_weight = state_dict.pop(f'h.{d}.ln_2.weight')
        ln_bias = state_dict.pop(f'h.{d}.ln_2.bias')
        state_dict[f'transformer.layers.{d}.norm1.weight'] = ln_weight
        state_dict[f'transformer.layers.{d}.norm1.bias'] = ln_bias
        if d > 0:
            ln_weight = state_dict.pop(f'h.{d}.ln_1.weight')
            ln_bias = state_dict.pop(f'h.{d}.ln_1.bias')
            state_dict[f'transformer.layers.{d - 1}.norm2.weight'] = ln_weight
            state_dict[f'transformer.layers.{d - 1}.norm2.bias'] = ln_bias

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict