gpt.py 37.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from einops import rearrange

Tri Dao's avatar
Tri Dao committed
19
from flash_attn.ops.activations import sqrelu_fwd
20
from flash_attn.modules.mha import MHA, ParallelMHA
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.mlp import Mlp, GatedMlp, ParallelMLP, FusedMLP, ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.modules.block import Block, ParallelBlock
23
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
24
from flash_attn.utils.distributed import sync_shared_params, all_gather_raw
25
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
26
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
27
28
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.models.gptj import remap_state_dict_hf_gptj
Tri Dao's avatar
Tri Dao committed
29
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
30
31
32
33
34

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

41
42
43
44
45
try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
46
47
48
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
49
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
56
try:
Tri Dao's avatar
Tri Dao committed
57
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
58
59
60
61
except ImportError:
    FusedDenseSqreluDense = None


62
63
64
logger = logging.getLogger(__name__)


65
66
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
73
74
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
75
76
    qkv_proj_bias = getattr(config, 'qkv_proj_bias', True)
    out_proj_bias = getattr(config, 'out_proj_bias', True)
Tri Dao's avatar
Tri Dao committed
77
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
78
    rotary_emb_base = getattr(config, 'rotary_emb_base', 10000.0)
Tri Dao's avatar
Tri Dao committed
79
80
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', None)
    rotary_emb_interleaved = getattr(config, 'rotary_emb_interleaved', False)
Tri Dao's avatar
Tri Dao committed
81
82
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
83
84
85
86
87
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
88
89
90
    parallel_kwargs = ({'process_group': process_group,
                        'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                       if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
91
92
93
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads,
                        qkv_proj_bias=qkv_proj_bias, out_proj_bias=out_proj_bias,
                        dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
94
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
95
96
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_base=rotary_emb_base,
                        rotary_emb_scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
97
                        rotary_emb_interleaved=rotary_emb_interleaved,
98
99
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
100
101
102
    return mixer_cls


103
104
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
105
106
    mlp_fc1_bias = getattr(config, 'mlp_fc1_bias', True)
    mlp_fc2_bias = getattr(config, 'mlp_fc2_bias', True)
107
108
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
109
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu']
Tri Dao's avatar
Tri Dao committed
110
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
111
112
113
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
114
115
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
116
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx', 'relu',
Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
                                              'sqrelu', 'glu', 'swiglu', 'geglu']
        if config.activation_function in ['glu', 'swiglu', 'geglu']:
            activation = (F.sigmoid if config.activation_function == 'glu'
                          else (F.silu if config.activation_function == 'swiglu'
                                else F.gelu))
            mlp_cls = partial(GatedMlp, hidden_features=config.n_inner, activation=activation,
Tri Dao's avatar
Tri Dao committed
123
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
124
        else:
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
130
131
132
            if config.activation_function == 'relu':
                activation = partial(F.relu, inplace=True)
            elif config.activation_function == 'sqrelu':
                activation = sqrelu_fwd
            else:
                approximate = ('tanh' if config.activation_function
                            in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none')
                activation=partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
138
139
            mlp_cls = Mlp if process_group is None else ParallelMLP
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
140
141
142
143
144
145
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
146
147
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
148
                raise ImportError('fused_dense is not installed')
149
            activation = ('gelu_approx' if config.activation_function
150
                          in ['gelu_new', 'gelu_fast', 'gelu_approx'] else config.activation_function)
151
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
152
153
154
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
155
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
156
                              checkpoint_lvl=mlp_checkpoint_lvl,
Tri Dao's avatar
Tri Dao committed
157
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
158
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
159
160
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
161
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=config.n_inner,
162
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


168
169
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
170
    sequence_parallel = getattr(config, 'sequence_parallel', True)
171
172
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
173
174
175
    use_rms_norm = getattr(config, 'rms_norm', False)
    norm_cls = partial(nn.LayerNorm if not use_rms_norm else RMSNorm,
                       eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
176
177
178
179
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
    residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
    prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    parallel_block = getattr(config, 'parallel_block', False)
    if not parallel_block:
        block = Block(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
    else:
        assert prenorm
        block = ParallelBlock(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, 'parallel_block_tied_norm', False),
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
Tri Dao's avatar
Tri Dao committed
201
202
203
204
    block.layer_idx = layer_idx
    return block


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
221
222
    def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None,
                        world_size=1, rank=0, **kwargs):
223
224
225
226
227
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
228
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
229
230
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
231
        state_dict = state_dict_from_pretrained(
232
            model_name, device='cpu', dtype=dtype
233
        )
Tri Dao's avatar
Tri Dao committed
234
        if model_name.startswith('gpt2'):
Tri Dao's avatar
Tri Dao committed
235
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
236
        elif model_name.startswith('facebook/opt'):
Tri Dao's avatar
Tri Dao committed
237
238
239
            state_dict = remap_state_dict_hf_opt(state_dict, config)
        elif model_name.startswith('EleutherAI/gpt-j-'):
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
Tri Dao's avatar
Tri Dao committed
240
241
        elif model_name.startswith('EleutherAI/gpt-neox-'):
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
242
243
        else:
            raise NotImplementedError(f'Model {model_name} not supported')
244
245
246
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
247
248
249
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
250

Tri Dao's avatar
Tri Dao committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


273
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
274

275
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
276
        super().__init__(config)
277
278
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
279
        self.sequence_parallel = getattr(config, 'sequence_parallel', True)
280
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx',
Tri Dao's avatar
Tri Dao committed
281
                                              'relu', 'sqrelu', 'glu', 'swiglu', 'geglu']
282
283
284
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
285
286
287
288
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
        # These 2 options are for OPT-350m
        self.prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
289
        use_rms_norm = getattr(config, 'rms_norm', False)
Tri Dao's avatar
Tri Dao committed
290
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
Tri Dao's avatar
Tri Dao committed
291
292
        # For GPT-J, GPT-NeoX
        self.parallel_block = getattr(config, 'parallel_block', False)
Tri Dao's avatar
Tri Dao committed
293

294
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
295
296
297
298
            self.embeddings = GPT2Embeddings(
                config.hidden_size, vocab_size, config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs
            )
299
300
        else:
            self.embeddings = ParallelGPT2Embeddings(
301
                config.hidden_size, vocab_size, config.max_position_embeddings,
302
303
                process_group=process_group, sequence_parallel=self.sequence_parallel,
                **factory_kwargs
304
            )
Tri Dao's avatar
Tri Dao committed
305

Tri Dao's avatar
Tri Dao committed
306
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
307
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
308
309
310
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
311
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
312
313
314
315
        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
                                     for i in range(config.num_hidden_layers)])

Tri Dao's avatar
Tri Dao committed
316
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
317
318
319
320
        if self.fused_dropout_add_ln:
            if ((not self.parallel_block and dropout_add_layer_norm is None)
                or (self.parallel_block and dropout_add_layer_norm_parallel_residual is None)):
                raise ImportError('dropout_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
321
322
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
323
324
325
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
            self.ln_f = norm_cls(config.hidden_size, eps=config.layer_norm_epsilon,
                                 **factory_kwargs)
326
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
327
            for p in self.ln_f.parameters():
328
329
330
331
332
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
333

Tri Dao's avatar
Tri Dao committed
334
335
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
336
337
338
        self.tie_weights()

    def tie_weights(self):
339
        if self.process_group is not None:
340
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
341

342
343
344
345
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return {i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
                for i, layer in enumerate(self.layers)}

Tri Dao's avatar
Tri Dao committed
346
    def forward(self, input_ids, position_ids=None, inference_params=None):
347
348
349
350
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
351
                            if self.process_group is not None and self.sequence_parallel else {})
352
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
353
354
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
355
        residual = None
356
357
        mixer_kwargs = ({'seqlen': input_ids.shape[1]}
                        if self.process_group is not None and self.sequence_parallel else {})
Tri Dao's avatar
Tri Dao committed
358
359
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
360
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
361
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
362
363
364
365
366
367
368
                if not self.parallel_block:
                    hidden_states, residual = layer(hidden_states, residual,
                                                    mixer_kwargs=mixer_kwargs)
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
369
370
371
372
373
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
374
375
376
377
378
379
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
                    residual = ((residual + dropped + dropped2)
                                if residual is not None else dropped + dropped2)
Tri Dao's avatar
Tri Dao committed
380
381
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
382
                # Set prenorm=False here since we don't need the residual
383
                if not self.parallel_block:
384
385
386
                    fused_add_norm_fn = (dropout_add_rms_norm if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm)
                    hidden_states = fused_add_norm_fn(
387
388
389
390
391
                        hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
                        residual_in_fp32=self.residual_in_fp32
                    )
                else:
392
393
394
395
                    fused_add_norm_fn = (dropout_add_rms_norm_parallel_residual
                                         if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm_parallel_residual)
                    hidden_states, _ = fused_add_norm_fn(
396
397
398
399
                        hidden_states, hidden_states2, residual, self.ln_f.weight, self.ln_f.bias,
                        None, None, self.drop_f.p if self.training else 0.0, self.ln_f.eps,
                        prenorm=False, residual_in_fp32=self.residual_in_fp32
                    )
Tri Dao's avatar
Tri Dao committed
400
401
402
        return hidden_states


Tri Dao's avatar
Tri Dao committed
403
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
404

405
406
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
407
        super().__init__(config)
408
409
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
410
        self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
Tri Dao's avatar
Tri Dao committed
411
        lm_head_bias = getattr(config, 'lm_head_bias', False)
412
413
414
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
        # This option is for OPT-350m
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
422
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
423
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
424
425
426
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
427
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
428
                embed_dim, vocab_size, process_group, bias=lm_head_bias,
429
430
                sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
431
432
433
434
435
436
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
437
438
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
439
        if self.process_group is not None:
440
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
441

442
443
444
445
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.transformer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype,
                                                         **kwargs)

446
    def forward(self, input_ids, position_ids=None, inference_params=None, last_token_only=False):
Tri Dao's avatar
Tri Dao committed
447
448
449
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
450
451
            last_token_only: whether to return the logit for the last token only,
                of shape (batch_size, vocab_size)
Tri Dao's avatar
Tri Dao committed
452
453
454
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
455
456
        if last_token_only:
            hidden_states = hidden_states[:, -1]
Tri Dao's avatar
Tri Dao committed
457
458
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
459
        lm_logits = self.lm_head(hidden_states)
460
461
462
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
463
            lm_logits = rearrange(lm_logits, '(n b) ... d -> b ... (n d)', b=hidden_states.shape[0])
Tri Dao's avatar
Tri Dao committed
464
465
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
466

Tri Dao's avatar
Tri Dao committed
467
468
469
470
471
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
        if 'transformer.ln_0.weight' in state_dict:
Tri Dao's avatar
Tri Dao committed
472
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight')
            ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias')
            state_dict['transformer.ln_f.weight'] = ln_weight
            state_dict['transformer.ln_f.bias'] = ln_bias
            for l in reversed(range(n_layers)):
                ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight')
                ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias')
                state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight
                state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias
                if l > 0:
                    ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight')
                    ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias')
                    state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight
                    state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias
            ln_weight = state_dict.pop('transformer.ln_0.weight')
            ln_bias = state_dict.pop('transformer.ln_0.bias')
            state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight
            state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias
        return super().load_state_dict(state_dict, strict=strict)

493

Tri Dao's avatar
Tri Dao committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    def shard_first_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[0] // world_size
        state_dict[key] = x[rank * dim:(rank + 1) * dim]

    def shard_last_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[-1] // world_size
        state_dict[key] = x[..., rank * dim:(rank + 1) * dim]

    def shard_qkv_headdim(state_dict, key):
        x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3)
        dim = x.shape[1] // world_size
        state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim],
                                    'three d ... -> (three d) ...')

    shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        shard_first_dim(state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight')
    for i in range(config.num_hidden_layers):
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias')
    return state_dict


def combine_state_dicts_tp(state_dicts, config):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

Tri Dao's avatar
Tri Dao committed
553
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
554
555
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
556
557
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
558
559

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
560
561
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
562
563

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
564
565
566
567
568
569
570
571
        if key in state_dict:
            xs = [rearrange(s[key], '(three d) ... -> three d ...', three=3) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), 'three d ... -> (three d) ...')

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
            xs = [rearrange(s[key], '(two d) ... -> two d ...', two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), 'two d ... -> (two d) ...')
Tri Dao's avatar
Tri Dao committed
572
573
574
575
576
577
578

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
    combine_word_embeddings(state_dicts, state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        combine_word_embeddings(state_dicts, state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        combine_dim(state_dicts, state_dict, 'transformer.embeddings.position_embeddings.weight', -1)
Tri Dao's avatar
Tri Dao committed
579
580
    mlp_combine_fn = (combine_gated_mlp if config.activation_function in ['glu', 'swiglu', 'geglu']
                      else partial(combine_dim, dim=0))
Tri Dao's avatar
Tri Dao committed
581
582
583
584
    for i in range(config.num_hidden_layers):
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.out_proj.weight', -1)
Tri Dao's avatar
Tri Dao committed
585
        mlp_combine_fn(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
Tri Dao's avatar
Tri Dao committed
586
587
588
589
590
591
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.bias', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc2.weight', -1)
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
592
593
594
595
596
597
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
598
599
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
600
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
601
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
602
603
604
605
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
606
607
608
609
610
    def key_mapping_ln(key):
        key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
638
639


Tri Dao's avatar
Tri Dao committed
640
641
642
643
644
645
646
647
648
649
650
651
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
        key = re.sub(r'^language_model.encoder.', 'transformer.', key)
        key = re.sub(r'^language_model.', 'transformer.', key)
        return key
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('transformer.embedding.word_embeddings.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
652
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
Tri Dao's avatar
Tri Dao committed
653
654
    vocab_size = (math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
                  * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
655
656
657
658
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
659

Tri Dao's avatar
Tri Dao committed
660
661
662
663
664
665
666
667
668
    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^transformer.final_layernorm.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^transformer.layers.(\d+).input_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
669

Tri Dao's avatar
Tri Dao committed
670
671
672
673
674
675
676
677
    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
678

Tri Dao's avatar
Tri Dao committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    # Attention
    def key_mapping_attn(key):
        key = re.sub(r'^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq',
                     r'transformer.layers.\1.mixer.rotary_emb.inv_freq', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)',
                     r'transformer.layers.\1.mixer.Wqkv.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.(weight|bias)',
                     r'transformer.layers.\1.mixer.out_proj.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
        Wqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = rearrange(
            Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
            three=3, headdim=headdim
        )
        bqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.bias')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.bias'] = rearrange(
            bqkv, '(nheads three headdim) -> (three nheads headdim)',
            three=3, headdim=headdim
        )
703
704

    return state_dict