gpt.py 46.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
from collections import OrderedDict, namedtuple
Tri Dao's avatar
Tri Dao committed
7
from collections.abc import Sequence
Tri Dao's avatar
Tri Dao committed
8
from functools import partial
Yuchao Dai's avatar
Yuchao Dai committed
9
from typing import Dict, List
Tri Dao's avatar
Tri Dao committed
10
11
12
13

import torch
import torch.nn as nn
import torch.nn.functional as F
14
from einops import rearrange
Tri Dao's avatar
Tri Dao committed
15
16
from transformers import GPT2Config

Kevin Hu's avatar
Kevin Hu committed
17
from flash_attn.models.bigcode import remap_state_dict_hf_bigcode
Tri Dao's avatar
Tri Dao committed
18
19
20
from flash_attn.models.falcon import remap_state_dict_hf_falcon
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
from flash_attn.models.gptj import remap_state_dict_hf_gptj
21
from flash_attn.models.llama import remap_state_dict_hf_llama
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.models.opt import remap_state_dict_hf_opt
Tri Dao's avatar
Tri Dao committed
23
from flash_attn.modules.block import Block, ParallelBlock
24
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
Tri Dao's avatar
Tri Dao committed
25
from flash_attn.modules.mha import MHA, ParallelMHA
Kevin Hu's avatar
Kevin Hu committed
26
27
28
29
30
31
32
33
from flash_attn.modules.mlp import (
    FusedMLP,
    GatedMlp,
    Mlp,
    ParallelFusedMLP,
    ParallelGatedMlp,
    ParallelMLP,
)
Tri Dao's avatar
Tri Dao committed
34
from flash_attn.ops.activations import sqrelu_fwd
Kevin Hu's avatar
Kevin Hu committed
35
from flash_attn.utils.distributed import all_gather_raw, get_dim_for_local_rank, sync_shared_params
Tri Dao's avatar
Tri Dao committed
36
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
37
from flash_attn.utils.pretrained import state_dict_from_pretrained
38
39
40
41
42

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
43
44
45
46
47
48

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

49
try:
Kevin Hu's avatar
Kevin Hu committed
50
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
51
52
53
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
54
55
56
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
57
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
58
59
60
61
62
63

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
64
try:
Tri Dao's avatar
Tri Dao committed
65
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
66
67
68
except ImportError:
    FusedDenseSqreluDense = None

69
70
71
logger = logging.getLogger(__name__)


72
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
73
74
    factory_kwargs = {"device": device, "dtype": dtype}
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
Tri Dao's avatar
Tri Dao committed
75
76
77
78
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
Tri Dao's avatar
Tri Dao committed
79
    dwconv = getattr(config, "attn_dwconv", False)
80
    if dwconv:
Tri Dao's avatar
Tri Dao committed
81
82
83
84
85
86
87
        assert process_group is None, "TensorParallel MHA does not support dwconv yet"
    qkv_proj_bias = getattr(config, "qkv_proj_bias", True)
    out_proj_bias = getattr(config, "out_proj_bias", True)
    rotary_emb_dim = int(getattr(config, "rotary_emb_fraction", 0.0) * head_dim)
    rotary_emb_base = getattr(config, "rotary_emb_base", 10000.0)
    rotary_emb_scale_base = getattr(config, "rotary_emb_scale_base", None)
    rotary_emb_interleaved = getattr(config, "rotary_emb_interleaved", False)
88
    use_alibi = getattr(config, "use_alibi", False)
Tri Dao's avatar
Tri Dao committed
89
90
    use_flash_attn = getattr(config, "use_flash_attn", False)
    fused_bias_fc = getattr(config, "fused_bias_fc", False)
91
    if not fused_bias_fc:
Tri Dao's avatar
Tri Dao committed
92
        assert process_group is None, "TensorParallel MHA requires fused_bias_fc"
93
    mha_cls = MHA if process_group is None else ParallelMHA
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
    serial_kwargs = (
        {"fused_bias_fc": fused_bias_fc, "dwconv": dwconv} if process_group is None else {}
    )
    parallel_kwargs = (
        {
            "process_group": process_group,
            "sequence_parallel": getattr(config, "sequence_parallel", True),
        }
        if process_group is not None
        else {}
    )
Tri Dao's avatar
Tri Dao committed
105
    num_heads_kv = getattr(config, "n_head_kv", None)
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    mixer_cls = partial(
        mha_cls,
        num_heads=config.num_attention_heads,
        num_heads_kv=num_heads_kv,
        qkv_proj_bias=qkv_proj_bias,
        out_proj_bias=out_proj_bias,
        dropout=config.attn_pdrop,
        softmax_scale=softmax_scale,
        causal=True,
        layer_idx=layer_idx,
        rotary_emb_dim=rotary_emb_dim,
        rotary_emb_base=rotary_emb_base,
        rotary_emb_scale_base=rotary_emb_scale_base,
        rotary_emb_interleaved=rotary_emb_interleaved,
120
        use_alibi=use_alibi,
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
        use_flash_attn=use_flash_attn,
        **serial_kwargs,
        **parallel_kwargs,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
126
127
128
    return mixer_cls


129
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
130
131
132
133
    factory_kwargs = {"device": device, "dtype": dtype}
    mlp_fc1_bias = getattr(config, "mlp_fc1_bias", True)
    mlp_fc2_bias = getattr(config, "mlp_fc2_bias", True)
    fused_mlp = getattr(config, "fused_mlp", False)
134
    if fused_mlp:
Tri Dao's avatar
Tri Dao committed
135
136
137
138
        assert config.activation_function in [
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
139
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
140
141
142
143
            "relu",
            "sqrelu",
        ]
    fused_dense_sqrelu_dense = getattr(config, "fused_dense_sqrelu_dense", False)
144
    if fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
145
146
147
        assert config.activation_function == "sqrelu", (
            "fused_dense_sqrelu_dense only " "supports approximate activation_function sqrelu"
        )
148
149
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
150
151
152
153
154
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
155
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
156
157
158
159
160
161
162
163
164
165
166
167
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            activation = (
                F.sigmoid
                if config.activation_function == "glu"
                else (F.silu if config.activation_function == "swiglu" else F.gelu)
            )
168
            mlp_cls = GatedMlp if process_group is None else ParallelGatedMlp
Tri Dao's avatar
Tri Dao committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
186
        else:
Tri Dao's avatar
Tri Dao committed
187
            if config.activation_function == "relu":
Tri Dao's avatar
Tri Dao committed
188
                activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
189
            elif config.activation_function == "sqrelu":
Tri Dao's avatar
Tri Dao committed
190
191
                activation = sqrelu_fwd
            else:
Tri Dao's avatar
Tri Dao committed
192
193
                approximate = (
                    "tanh"
Kevin Hu's avatar
Kevin Hu committed
194
195
                    if config.activation_function
                    in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
196
197
198
                    else "none"
                )
                activation = partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
199
            mlp_cls = Mlp if process_group is None else ParallelMLP
Tri Dao's avatar
Tri Dao committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
217
    else:
Tri Dao's avatar
Tri Dao committed
218
        mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
Tri Dao's avatar
Tri Dao committed
219
220
221
222
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
223
224
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
225
226
227
                raise ImportError("fused_dense is not installed")
            activation = (
                "gelu_approx"
Kevin Hu's avatar
Kevin Hu committed
228
229
                if config.activation_function
                in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
Tri Dao's avatar
Tri Dao committed
230
231
                else config.activation_function
            )
232
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
            parallel_kwargs = (
                {
                    "process_group": process_group,
                    "sequence_parallel": getattr(config, "sequence_parallel", True),
                }
                if process_group is not None
                else {}
            )
            mlp_cls = partial(
                mlp_cls,
                hidden_features=config.n_inner,
                activation=activation,
                checkpoint_lvl=mlp_checkpoint_lvl,
                bias1=mlp_fc1_bias,
                bias2=mlp_fc2_bias,
                **parallel_kwargs,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
251
        elif fused_dense_sqrelu_dense:
252
            if process_group is not None:
Tri Dao's avatar
Tri Dao committed
253
                assert fused_mlp, "Tensor Parallel is not implemented for FusedDenseSqreluDense"
Tri Dao's avatar
Tri Dao committed
254
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
255
256
257
258
259
260
            mlp_cls = partial(
                FusedDenseSqreluDense,
                hidden_features=config.n_inner,
                checkpoint_lvl=mlp_checkpoint_lvl,
                **factory_kwargs,
            )
Tri Dao's avatar
Tri Dao committed
261
        else:
Tri Dao's avatar
Tri Dao committed
262
            raise RuntimeError("MLP type not supported")
Tri Dao's avatar
Tri Dao committed
263
264
265
    return mlp_cls


266
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
267
268
    factory_kwargs = {"device": device, "dtype": dtype}
    sequence_parallel = getattr(config, "sequence_parallel", True)
269
270
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
271
272
273
274
275
276
    use_rms_norm = getattr(config, "rms_norm", False)
    norm_cls = partial(
        nn.LayerNorm if not use_rms_norm else RMSNorm,
        eps=config.layer_norm_epsilon,
        **factory_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
277
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
278
    residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
279
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
Tri Dao's avatar
Tri Dao committed
280
281
    prenorm = getattr(config, "prenorm", True)
    parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
282
283
    if not parallel_block:
        block = Block(
Tri Dao's avatar
Tri Dao committed
284
285
286
287
288
289
290
291
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            prenorm=prenorm,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
292
293
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
294
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
295
296
297
298
        )
    else:
        assert prenorm
        block = ParallelBlock(
Tri Dao's avatar
Tri Dao committed
299
300
301
302
303
304
305
306
            config.hidden_size,
            mixer_cls,
            mlp_cls,
            norm_cls=norm_cls,
            resid_dropout1=resid_dropout1,
            resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, "parallel_block_tied_norm", False),
            fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
Tri Dao's avatar
Tri Dao committed
307
308
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
Tri Dao's avatar
Tri Dao committed
309
            mark_shared_params=process_group is not None,
Tri Dao's avatar
Tri Dao committed
310
        )
Tri Dao's avatar
Tri Dao committed
311
312
313
314
    block.layer_idx = layer_idx
    return block


315
class GPTPreTrainedModel(nn.Module):
Tri Dao's avatar
Tri Dao committed
316
317
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
318
    """
Tri Dao's avatar
Tri Dao committed
319

320
321
322
323
324
325
326
327
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
Tri Dao's avatar
Tri Dao committed
328
329
                )
            )
330
331
332
        self.config = config

    @classmethod
Tri Dao's avatar
Tri Dao committed
333
334
335
336
337
338
339
340
341
342
343
344
    def from_pretrained(
        cls,
        model_name,
        config,
        *args,
        strict=True,
        device=None,
        dtype=None,
        world_size=1,
        rank=0,
        **kwargs,
    ):
345
346
347
348
349
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
350
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
351
352
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
353
354
        state_dict = state_dict_from_pretrained(model_name, device="cpu", dtype=dtype)
        if model_name.startswith("gpt2"):
Tri Dao's avatar
Tri Dao committed
355
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
356
        elif model_name.startswith("facebook/opt"):
Tri Dao's avatar
Tri Dao committed
357
            state_dict = remap_state_dict_hf_opt(state_dict, config)
358
359
360
361
        elif (
            model_name.startswith("EleutherAI/gpt-j-")
            or model_name.startswith("togethercomputer/GPT-JT-")
        ):
Tri Dao's avatar
Tri Dao committed
362
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
363
364
365
366
367
        elif (
            model_name.startswith("EleutherAI/gpt-neox-")
            or model_name.startswith("EleutherAI/pythia-")
            or model_name.startswith("togethercomputer/RedPajama-INCITE-")
        ):
Tri Dao's avatar
Tri Dao committed
368
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
369
        elif model_name.startswith("tiiuae/falcon-"):
Tri Dao's avatar
Tri Dao committed
370
            state_dict = remap_state_dict_hf_falcon(state_dict, config)
371
372
        elif model_name.startswith("meta-llama/Llama-"):
            state_dict = remap_state_dict_hf_llama(state_dict, config)
Kevin Hu's avatar
Kevin Hu committed
373
374
        elif model_name.startswith("bigcode/") or model_name.startswith("WizardLM/"):
            state_dict = remap_state_dict_hf_bigcode(state_dict, config)
Tri Dao's avatar
Tri Dao committed
375
        else:
Tri Dao's avatar
Tri Dao committed
376
            raise NotImplementedError(f"Model {model_name} not supported")
377
378
379
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
380
381
382
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
383

Tri Dao's avatar
Tri Dao committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


406
class GPTModel(GPTPreTrainedModel):
407
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
408
        super().__init__(config)
Tri Dao's avatar
Tri Dao committed
409
        factory_kwargs = {"device": device, "dtype": dtype}
410
        self.process_group = process_group
Tri Dao's avatar
Tri Dao committed
411
412
413
414
415
416
        self.sequence_parallel = getattr(config, "sequence_parallel", True)
        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_approx",
Kevin Hu's avatar
Kevin Hu committed
417
            "gelu_pytorch_tanh",
Tri Dao's avatar
Tri Dao committed
418
419
420
421
422
423
424
425
426
427
            "relu",
            "sqrelu",
            "glu",
            "swiglu",
            "geglu",
        ]
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
428
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
Tri Dao's avatar
Tri Dao committed
429
        self.residual_in_fp32 = getattr(config, "residual_in_fp32", False)
Tri Dao's avatar
Tri Dao committed
430
        # These 2 options are for OPT-350m
Tri Dao's avatar
Tri Dao committed
431
432
433
        self.prenorm = getattr(config, "prenorm", True)
        use_rms_norm = getattr(config, "rms_norm", False)
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
434
        # For GPT-J, GPT-NeoX
Tri Dao's avatar
Tri Dao committed
435
        self.parallel_block = getattr(config, "parallel_block", False)
Tri Dao's avatar
Tri Dao committed
436

437
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
438
            self.embeddings = GPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
439
440
441
442
443
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim,
                **factory_kwargs,
Tri Dao's avatar
Tri Dao committed
444
            )
445
446
        else:
            self.embeddings = ParallelGPT2Embeddings(
Tri Dao's avatar
Tri Dao committed
447
448
449
450
451
452
                config.hidden_size,
                vocab_size,
                config.max_position_embeddings,
                process_group=process_group,
                sequence_parallel=self.sequence_parallel,
                **factory_kwargs,
453
            )
Tri Dao's avatar
Tri Dao committed
454

Tri Dao's avatar
Tri Dao committed
455
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
456
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
457
458
459
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
460
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
461
462
463
464
465
466
        self.layers = nn.ModuleList(
            [
                create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
                for i in range(config.num_hidden_layers)
            ]
        )
Tri Dao's avatar
Tri Dao committed
467

Tri Dao's avatar
Tri Dao committed
468
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
469
        if self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
470
471
472
473
            if (not self.parallel_block and dropout_add_layer_norm is None) or (
                self.parallel_block and dropout_add_layer_norm_parallel_residual is None
            ):
                raise ImportError("dropout_layer_norm is not installed")
Tri Dao's avatar
Tri Dao committed
474
475
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
476
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
Tri Dao's avatar
Tri Dao committed
477
478
479
            self.ln_f = norm_cls(
                config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs
            )
480
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
481
            for p in self.ln_f.parameters():
482
483
484
485
486
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
487

Tri Dao's avatar
Tri Dao committed
488
489
490
491
492
493
494
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
495
496
497
        self.tie_weights()

    def tie_weights(self):
498
        if self.process_group is not None:
499
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
500

501
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
502
503
504
505
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }
506

Tri Dao's avatar
Tri Dao committed
507
    def forward(self, input_ids, position_ids=None, inference_params=None):
508
509
510
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
Tri Dao's avatar
Tri Dao committed
511
512
513
514
515
        embedding_kwargs = (
            {"combine_batch_seqlen_dim": True}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
516
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
517
518
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
519
        residual = None
Tri Dao's avatar
Tri Dao committed
520
521
522
523
524
        mixer_kwargs = (
            {"seqlen": input_ids.shape[1]}
            if self.process_group is not None and self.sequence_parallel
            else {}
        )
Tri Dao's avatar
Tri Dao committed
525
        if inference_params is not None:
Tri Dao's avatar
Tri Dao committed
526
            mixer_kwargs["inference_params"] = inference_params
Tri Dao's avatar
Tri Dao committed
527
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
528
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
529
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
530
531
532
                    hidden_states, residual = layer(
                        hidden_states, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
533
534
535
536
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
537
538
539
540
541
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
542
543
544
545
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
Tri Dao's avatar
Tri Dao committed
546
547
548
549
550
                    residual = (
                        (residual + dropped + dropped2)
                        if residual is not None
                        else dropped + dropped2
                    )
Tri Dao's avatar
Tri Dao committed
551
552
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
553
                # Set prenorm=False here since we don't need the residual
554
                if not self.parallel_block:
Tri Dao's avatar
Tri Dao committed
555
556
557
558
559
                    fused_add_norm_fn = (
                        dropout_add_rms_norm
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm
                    )
560
                    hidden_states = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
561
562
563
564
565
566
567
568
                        hidden_states,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
569
570
                    )
                else:
Tri Dao's avatar
Tri Dao committed
571
572
573
574
575
                    fused_add_norm_fn = (
                        dropout_add_rms_norm_parallel_residual
                        if isinstance(self.ln_f, RMSNorm)
                        else dropout_add_layer_norm_parallel_residual
                    )
576
                    hidden_states, _ = fused_add_norm_fn(
Tri Dao's avatar
Tri Dao committed
577
578
579
580
581
582
583
584
585
586
587
                        hidden_states,
                        hidden_states2,
                        residual,
                        self.ln_f.weight,
                        self.ln_f.bias,
                        None,
                        None,
                        self.drop_f.p if self.training else 0.0,
                        self.ln_f.eps,
                        prenorm=False,
                        residual_in_fp32=self.residual_in_fp32,
588
                    )
Tri Dao's avatar
Tri Dao committed
589
590
591
        return hidden_states


Tri Dao's avatar
Tri Dao committed
592
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
593
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
Tri Dao's avatar
Tri Dao committed
594
        factory_kwargs = {"device": device, "dtype": dtype}
595
        super().__init__(config)
596
597
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
598
599
600
601
602
603
        self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
        lm_head_bias = getattr(config, "lm_head_bias", False)
        pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        vocab_size = (
            math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
604
        # This option is for OPT-350m
Tri Dao's avatar
Tri Dao committed
605
        word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
Tri Dao's avatar
Tri Dao committed
606
607
608
609
610
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
611
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
612
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
613
614
        else:
            if ColumnParallelLinear is None:
Tri Dao's avatar
Tri Dao committed
615
                raise ImportError("fused_dense_lib is not installed")
616
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
617
618
619
620
621
622
                embed_dim,
                vocab_size,
                process_group,
                bias=lm_head_bias,
                sequence_parallel=getattr(config, "sequence_parallel", True),
                **factory_kwargs,
623
            )
Tri Dao's avatar
Tri Dao committed
624
        # Initialize weights and apply final processing
Tri Dao's avatar
Tri Dao committed
625
626
627
628
629
630
631
        self.apply(
            partial(
                _init_weights,
                n_layer=config.num_hidden_layers,
                initializer_range=config.initializer_range,
            )
        )
Tri Dao's avatar
Tri Dao committed
632
633
634
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
635
636
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
637
        if self.process_group is not None:
638
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
639

640
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
641
642
643
        return self.transformer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )
644

645
    def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
Tri Dao's avatar
Tri Dao committed
646
        """
647
        input_ids: (batch, seqlen) int tensor
Tri Dao's avatar
Tri Dao committed
648
649
        inference_params: for generation. Adapted from Megatron-LM (and Apex)
        https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
650
        num_last_tokens: if > 0, only return the logits for the last n tokens
Tri Dao's avatar
Tri Dao committed
651
        """
Kevin Hu's avatar
Kevin Hu committed
652
653
654
        assert (
            input_ids.ndim == 2
        ), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
655
        b, slen = input_ids.shape
Tri Dao's avatar
Tri Dao committed
656
657
658
        hidden_states = self.transformer(
            input_ids, position_ids=position_ids, inference_params=inference_params
        )
Tri Dao's avatar
Tri Dao committed
659
660
        if inference_params is not None:
            assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
661
662
        if num_last_tokens > 0:
            hidden_states = hidden_states[:, -num_last_tokens:]
Tri Dao's avatar
Tri Dao committed
663
664
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
665
        lm_logits = self.lm_head(hidden_states)
666
667
668
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
669
            lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
Tri Dao's avatar
Tri Dao committed
670
        CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
Tri Dao's avatar
Tri Dao committed
671
        return CausalLMOutput(logits=lm_logits)
672

Tri Dao's avatar
Tri Dao committed
673
674
675
676
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
Tri Dao's avatar
Tri Dao committed
677
        if "transformer.ln_0.weight" in state_dict:
Tri Dao's avatar
Tri Dao committed
678
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
679
680
681
682
            ln_weight = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.weight")
            ln_bias = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.bias")
            state_dict["transformer.ln_f.weight"] = ln_weight
            state_dict["transformer.ln_f.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
683
            for l in reversed(range(n_layers)):
Tri Dao's avatar
Tri Dao committed
684
685
686
687
                ln_weight = state_dict.pop(f"transformer.layers.{l}.norm1.weight")
                ln_bias = state_dict.pop(f"transformer.layers.{l}.norm1.bias")
                state_dict[f"transformer.layers.{l}.norm2.weight"] = ln_weight
                state_dict[f"transformer.layers.{l}.norm2.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
688
                if l > 0:
Tri Dao's avatar
Tri Dao committed
689
690
691
692
693
694
695
696
                    ln_weight = state_dict.pop(f"transformer.layers.{l - 1}.norm2.weight")
                    ln_bias = state_dict.pop(f"transformer.layers.{l - 1}.norm2.bias")
                    state_dict[f"transformer.layers.{l}.norm1.weight"] = ln_weight
                    state_dict[f"transformer.layers.{l}.norm1.bias"] = ln_bias
            ln_weight = state_dict.pop("transformer.ln_0.weight")
            ln_bias = state_dict.pop("transformer.ln_0.bias")
            state_dict[f"transformer.layers.0.norm1.weight"] = ln_weight
            state_dict[f"transformer.layers.0.norm1.bias"] = ln_bias
Tri Dao's avatar
Tri Dao committed
697
698
        return super().load_state_dict(state_dict, strict=strict)

699

Tri Dao's avatar
Tri Dao committed
700
701
702
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
703
704

    This function modifies state_dict in place.
Tri Dao's avatar
Tri Dao committed
705
    """
Tri Dao's avatar
Tri Dao committed
706
707
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
708
709
710
711
712
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

713
714
715
716
717
718
    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

Tri Dao's avatar
Tri Dao committed
719
    def shard_first_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
720
721
722
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size
Tri Dao's avatar
Tri Dao committed
723
            state_dict[key] = x[rank * dim : (rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
724

725
    def shard_last_dim(state_dict, key, multiple_of=1):
Tri Dao's avatar
Tri Dao committed
726
727
        if key in state_dict:
            x = state_dict[key]
728
729
730
731
732
733
            dim_each_rank = [
                get_dim_for_local_rank(x.size(-1), world_size, local_rank, multiple_of)
                for local_rank in range(world_size)
            ]
            beg, end = tuple(sum(dim_each_rank[:pos]) for pos in (rank, rank + 1))
            state_dict[key] = x[..., beg:end]
Tri Dao's avatar
Tri Dao committed
734

Tri Dao's avatar
Tri Dao committed
735
736
737
738
739
    def shard_gatedmlp_fc1_dim(state_dict, key):
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size // 2
            state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
740
                rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim : (rank + 1) * dim],
Tri Dao's avatar
Tri Dao committed
741
                "two o ... -> (two o) ...",
Tri Dao's avatar
Tri Dao committed
742
743
            )

Tri Dao's avatar
Tri Dao committed
744
    def shard_qkv_headdim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
745
        if key in state_dict:
746
            n_head_each_rank = [
Tri Dao's avatar
Tri Dao committed
747
748
                get_dim_for_local_rank(n_head, world_size, local_rank)
                for local_rank in range(world_size)
749
750
            ]
            n_head_kv_each_rank = [
Tri Dao's avatar
Tri Dao committed
751
752
                get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                for local_rank in range(world_size)
753
754
755
756
757
758
759
760
            ]

            beg_n_head = sum(n_head_each_rank[:rank])
            end_n_head = sum(n_head_each_rank[: rank + 1])

            beg_n_head_kv = sum(n_head_kv_each_rank[:rank])
            end_n_head_kv = sum(n_head_kv_each_rank[: rank + 1])

Tri Dao's avatar
Tri Dao committed
761
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
762
763
                x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3)
                state_dict[key] = rearrange(
Tri Dao's avatar
Tri Dao committed
764
765
                    x[:, beg_n_head * head_dim : end_n_head * head_dim],
                    "three d ... -> (three d) ...",
Tri Dao's avatar
Tri Dao committed
766
                )
Tri Dao's avatar
Tri Dao committed
767
            else:
Tri Dao's avatar
Tri Dao committed
768
769
770
771
772
773
774
775
                x = rearrange(
                    state_dict[key],
                    "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                    nheadqkv=n_head + 2 * n_head_kv,
                )
                state_dict[key] = rearrange(
                    torch.cat(
                        [
776
                            x[beg_n_head:end_n_head],
Tri Dao's avatar
Tri Dao committed
777
778
779
780
781
782
783
784
                            x[n_head + beg_n_head_kv : n_head + end_n_head_kv],
                            x[
                                n_head
                                + n_head_kv
                                + beg_n_head_kv : n_head
                                + n_head_kv
                                + end_n_head_kv
                            ],
Tri Dao's avatar
Tri Dao committed
785
786
787
788
789
790
791
792
793
794
795
                        ],
                        dim=0,
                    ),
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )

    shard_first_dim(state_dict, "transformer.embeddings.word_embeddings.weight")
    if "lm_head.weight" in state_dict:
        shard_first_dim(state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        shard_last_dim(state_dict, "transformer.embeddings.position_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
796
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
797
798
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
799
800
801
        shard_last_dim(
            state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", multiple_of=head_dim
        )
Tri Dao's avatar
Tri Dao committed
802
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
803
            state_dict.pop(f"transformer.layers.{i}.mixer.out_proj.bias", None)
Tri Dao's avatar
Tri Dao committed
804
        if config.activation_function in ["glu", "swiglu", "geglu"]:
Tri Dao's avatar
Tri Dao committed
805
806
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
Tri Dao's avatar
Tri Dao committed
807
        else:
Tri Dao's avatar
Tri Dao committed
808
809
810
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
            shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
        shard_last_dim(state_dict, f"transformer.layers.{i}.mlp.fc2.weight")
Tri Dao's avatar
Tri Dao committed
811
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
812
            state_dict.pop(f"transformer.layers.{i}.mlp.fc2.bias", None)
Tri Dao's avatar
Tri Dao committed
813
814
815
    return state_dict


Yuchao Dai's avatar
Yuchao Dai committed
816
def combine_state_dicts_tp(state_dicts: List[Dict[str, torch.Tensor]], config: GPT2Config):
817
818
    """Convert the list of sharded state_dict of a GPT model with tensor parallel to
    the state_dict of a standard GPT model.
819
820

    This function is meant to be the "reverse" of shard_state_dict_tp.
821
822
823

    Precondition:
        - state_dicts should be ordered in the same way as the shards were created.
Tri Dao's avatar
Tri Dao committed
824
825
826
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
Tri Dao's avatar
Tri Dao committed
827
828
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
Tri Dao's avatar
Tri Dao committed
829
830
831
832
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0
833
834
    assert config.hidden_size % config.n_head == 0
    headdim = config.hidden_size // config.n_head
Tri Dao's avatar
Tri Dao committed
835

Tri Dao's avatar
Tri Dao committed
836
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
837
838
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
839
840
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
841
842

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
843
844
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
845
846

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
847
        n_head = config.n_head
Tri Dao's avatar
Tri Dao committed
848
        n_head_kv = getattr(config, "n_head_kv", n_head)
Tri Dao's avatar
Tri Dao committed
849
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
850
            if n_head_kv == n_head:
Tri Dao's avatar
Tri Dao committed
851
852
853
854
                xs = [
                    rearrange(s[key], "(three d) ... -> three d ...", three=3) for s in state_dicts
                ]
                state_dict[key] = rearrange(torch.cat(xs, dim=1), "three d ... -> (three d) ...")
Tri Dao's avatar
Tri Dao committed
855
            else:
856
857
858
859
860
861
862
863
                n_head_each_rank = [
                    get_dim_for_local_rank(n_head, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
                n_head_kv_each_rank = [
                    get_dim_for_local_rank(n_head_kv, world_size, local_rank)
                    for local_rank in range(world_size)
                ]
864
865
866
867
868
869
870
                xs = [
                    rearrange(
                        s[key],
                        "(nheadqkv headdim) ... -> nheadqkv headdim ...",
                        nheadqkv=rank_n_head + 2 * rank_n_head_kv,
                        headdim=headdim,
                    )
Kevin Hu's avatar
Kevin Hu committed
871
872
873
                    for s, rank_n_head, rank_n_head_kv in zip(
                        state_dicts, n_head_each_rank, n_head_kv_each_rank
                    )
874
                ]
Kevin Hu's avatar
Kevin Hu committed
875
                wq = torch.cat([x[: n_head_each_rank[rank]] for rank, x in enumerate(xs)], dim=0)
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
                wk = torch.cat(
                    [
                        x[
                            n_head_each_rank[rank] : n_head_each_rank[rank]
                            + n_head_kv_each_rank[rank]
                        ]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wv = torch.cat(
                    [
                        x[n_head_each_rank[rank] + n_head_kv_each_rank[rank] :]
                        for rank, x in enumerate(xs)
                    ],
                    dim=0,
                )
                wqkv = torch.cat(
                    [wq, wk, wv],
                    dim=0,
                )
Tri Dao's avatar
Tri Dao committed
897
                state_dict[key] = rearrange(
898
                    wqkv,
Tri Dao's avatar
Tri Dao committed
899
900
                    "nheadqkv headdim ... -> (nheadqkv headdim) ...",
                )
Tri Dao's avatar
Tri Dao committed
901
902
903

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
904
905
            xs = [rearrange(s[key], "(two d) ... -> two d ...", two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), "two d ... -> (two d) ...")
Tri Dao's avatar
Tri Dao committed
906
907

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
Tri Dao's avatar
Tri Dao committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    combine_word_embeddings(
        state_dicts, state_dict, "transformer.embeddings.word_embeddings.weight"
    )
    if "lm_head.weight" in state_dict:
        combine_word_embeddings(state_dicts, state_dict, "lm_head.weight")
    if "transformer.embeddings.position_embeddings.weight" in state_dict:
        combine_dim(
            state_dicts, state_dict, "transformer.embeddings.position_embeddings.weight", -1
        )
    mlp_combine_fn = (
        combine_gated_mlp
        if config.activation_function in ["glu", "swiglu", "geglu"]
        else partial(combine_dim, dim=0)
    )
Tri Dao's avatar
Tri Dao committed
922
    for i in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
923
924
925
926
927
928
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
        combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", -1)
        mlp_combine_fn(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.bias", 0)
        combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc2.weight", -1)
Tri Dao's avatar
Tri Dao committed
929
930
931
932
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
933
934
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
935
936
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

937
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
938
    word_embeddings = state_dict.pop("wte.weight")
939
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
940
941
942
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
943
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
944
    )
Tri Dao's avatar
Tri Dao committed
945
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
946
947

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
948
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
949
950
        key = re.sub(r"^ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(r"^h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
Tri Dao's avatar
Tri Dao committed
951
        return key
Tri Dao's avatar
Tri Dao committed
952

Tri Dao's avatar
Tri Dao committed
953
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
954
955
956

    # MLP
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
957
958
959
960
961
        W1 = state_dict.pop(f"h.{d}.mlp.c_fc.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = W1.t()
        W2 = state_dict.pop(f"h.{d}.mlp.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()

962
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
963
964
        key = re.sub(r"^h.(\d+).mlp.c_fc.bias", r"transformer.layers.\1.mlp.fc1.bias", key)
        key = re.sub(r"^h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
965
        return key
Tri Dao's avatar
Tri Dao committed
966

967
968
969
970
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
971
972
973
974
975
976
        state_dict.pop(f"h.{d}.attn.bias")  # We don't store this bias
        Wqkv = state_dict.pop(f"h.{d}.attn.c_attn.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
        Wout = state_dict.pop(f"h.{d}.attn.c_proj.weight")
        state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()

977
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
978
979
980
981
        key = re.sub(r"^h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
        key = re.sub(
            r"^h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
        )
982
        return key
Tri Dao's avatar
Tri Dao committed
983

984
985
986
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
987
988


Tri Dao's avatar
Tri Dao committed
989
990
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
Tri Dao's avatar
Tri Dao committed
991
992
        key = re.sub(r"^language_model.encoder.", "transformer.", key)
        key = re.sub(r"^language_model.", "transformer.", key)
Tri Dao's avatar
Tri Dao committed
993
        return key
Tri Dao's avatar
Tri Dao committed
994

Tri Dao's avatar
Tri Dao committed
995
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
996

Tri Dao's avatar
Tri Dao committed
997
998
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
Tri Dao's avatar
Tri Dao committed
999
1000
        return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)

Tri Dao's avatar
Tri Dao committed
1001
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
1002
    word_embeddings = state_dict.pop("transformer.embedding.word_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
1003
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
1004
1005
1006
1007
1008
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
1009
1010
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
Tri Dao's avatar
Tri Dao committed
1011
    state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
1012

Tri Dao's avatar
Tri Dao committed
1013
1014
    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        key = re.sub(r"^transformer.final_layernorm.(weight|bias)", r"transformer.ln_f.\1", key)
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)",
            r"transformer.layers.\1.norm2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1026
        return key
Tri Dao's avatar
Tri Dao committed
1027

Tri Dao's avatar
Tri Dao committed
1028
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
1029

Tri Dao's avatar
Tri Dao committed
1030
1031
    # MLP
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)",
            r"transformer.layers.\1.mlp.fc2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1042
        return key
Tri Dao's avatar
Tri Dao committed
1043

Tri Dao's avatar
Tri Dao committed
1044
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
1045

Tri Dao's avatar
Tri Dao committed
1046
1047
    # Attention
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq",
            r"transformer.layers.\1.mixer.rotary_emb.inv_freq",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)",
            r"transformer.layers.\1.mixer.Wqkv.\2",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.dense.(weight|bias)",
            r"transformer.layers.\1.mixer.out_proj.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
1063
        return key
Tri Dao's avatar
Tri Dao committed
1064

Tri Dao's avatar
Tri Dao committed
1065
1066
1067
1068
1069
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
1070
1071
1072
1073
1074
1075
        Wqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = rearrange(
            Wqkv,
            "(nheads three headdim) ... -> (three nheads headdim) ...",
            three=3,
            headdim=headdim,
Tri Dao's avatar
Tri Dao committed
1076
        )
Tri Dao's avatar
Tri Dao committed
1077
1078
1079
        bqkv = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
        state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = rearrange(
            bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
Tri Dao's avatar
Tri Dao committed
1080
        )
1081
1082

    return state_dict