gpt.py 39.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from einops import rearrange

Tri Dao's avatar
Tri Dao committed
19
from flash_attn.ops.activations import sqrelu_fwd
20
from flash_attn.modules.mha import MHA, ParallelMHA
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.mlp import Mlp, GatedMlp, ParallelMLP, FusedMLP, ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.modules.block import Block, ParallelBlock
23
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
24
from flash_attn.utils.distributed import sync_shared_params, all_gather_raw
25
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
26
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
27
28
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.models.gptj import remap_state_dict_hf_gptj
Tri Dao's avatar
Tri Dao committed
29
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
30
31
32
33
34

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

41
42
43
44
45
try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
46
47
48
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
49
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
56
try:
Tri Dao's avatar
Tri Dao committed
57
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
58
59
60
61
except ImportError:
    FusedDenseSqreluDense = None


62
63
64
logger = logging.getLogger(__name__)


65
66
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
73
74
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
75
76
    qkv_proj_bias = getattr(config, 'qkv_proj_bias', True)
    out_proj_bias = getattr(config, 'out_proj_bias', True)
Tri Dao's avatar
Tri Dao committed
77
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
78
    rotary_emb_base = getattr(config, 'rotary_emb_base', 10000.0)
Tri Dao's avatar
Tri Dao committed
79
80
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', None)
    rotary_emb_interleaved = getattr(config, 'rotary_emb_interleaved', False)
Tri Dao's avatar
Tri Dao committed
81
82
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
83
84
85
86
87
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
88
89
90
    parallel_kwargs = ({'process_group': process_group,
                        'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                       if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
91
    num_heads_kv = getattr(config, "n_head_kv", None)
Tri Dao's avatar
Tri Dao committed
92
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads,
Tri Dao's avatar
Tri Dao committed
93
                        num_heads_kv=num_heads_kv,
Tri Dao's avatar
Tri Dao committed
94
95
                        qkv_proj_bias=qkv_proj_bias, out_proj_bias=out_proj_bias,
                        dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
96
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
97
98
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_base=rotary_emb_base,
                        rotary_emb_scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
99
                        rotary_emb_interleaved=rotary_emb_interleaved,
100
101
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
102
103
104
    return mixer_cls


105
106
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
107
108
    mlp_fc1_bias = getattr(config, 'mlp_fc1_bias', True)
    mlp_fc2_bias = getattr(config, 'mlp_fc2_bias', True)
109
110
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
111
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu']
Tri Dao's avatar
Tri Dao committed
112
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
113
114
115
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
116
117
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
118
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx', 'relu',
Tri Dao's avatar
Tri Dao committed
119
120
121
122
123
124
                                              'sqrelu', 'glu', 'swiglu', 'geglu']
        if config.activation_function in ['glu', 'swiglu', 'geglu']:
            activation = (F.sigmoid if config.activation_function == 'glu'
                          else (F.silu if config.activation_function == 'swiglu'
                                else F.gelu))
            mlp_cls = partial(GatedMlp, hidden_features=config.n_inner, activation=activation,
Tri Dao's avatar
Tri Dao committed
125
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
126
        else:
Tri Dao's avatar
Tri Dao committed
127
128
129
130
131
132
133
134
            if config.activation_function == 'relu':
                activation = partial(F.relu, inplace=True)
            elif config.activation_function == 'sqrelu':
                activation = sqrelu_fwd
            else:
                approximate = ('tanh' if config.activation_function
                            in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none')
                activation=partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
            mlp_cls = Mlp if process_group is None else ParallelMLP
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
142
143
144
145
146
147
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
148
149
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
150
                raise ImportError('fused_dense is not installed')
151
            activation = ('gelu_approx' if config.activation_function
152
                          in ['gelu_new', 'gelu_fast', 'gelu_approx'] else config.activation_function)
153
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
154
155
156
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
157
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
158
                              checkpoint_lvl=mlp_checkpoint_lvl,
Tri Dao's avatar
Tri Dao committed
159
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
160
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
161
162
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
163
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=config.n_inner,
164
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
165
166
167
168
169
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


170
171
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
172
    sequence_parallel = getattr(config, 'sequence_parallel', True)
173
174
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
175
176
177
    use_rms_norm = getattr(config, 'rms_norm', False)
    norm_cls = partial(nn.LayerNorm if not use_rms_norm else RMSNorm,
                       eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
178
179
180
181
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
    residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
    prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    parallel_block = getattr(config, 'parallel_block', False)
    if not parallel_block:
        block = Block(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
    else:
        assert prenorm
        block = ParallelBlock(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, 'parallel_block_tied_norm', False),
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
Tri Dao's avatar
Tri Dao committed
203
204
205
206
    block.layer_idx = layer_idx
    return block


207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
223
224
    def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None,
                        world_size=1, rank=0, **kwargs):
225
226
227
228
229
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
230
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
231
232
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
233
        state_dict = state_dict_from_pretrained(
234
            model_name, device='cpu', dtype=dtype
235
        )
Tri Dao's avatar
Tri Dao committed
236
        if model_name.startswith('gpt2'):
Tri Dao's avatar
Tri Dao committed
237
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
238
        elif model_name.startswith('facebook/opt'):
Tri Dao's avatar
Tri Dao committed
239
240
241
            state_dict = remap_state_dict_hf_opt(state_dict, config)
        elif model_name.startswith('EleutherAI/gpt-j-'):
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
Tri Dao's avatar
Tri Dao committed
242
243
        elif model_name.startswith('EleutherAI/gpt-neox-'):
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
244
245
        else:
            raise NotImplementedError(f'Model {model_name} not supported')
246
247
248
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
249
250
251
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
252

Tri Dao's avatar
Tri Dao committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


275
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
276

277
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
278
        super().__init__(config)
279
280
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
281
        self.sequence_parallel = getattr(config, 'sequence_parallel', True)
282
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx',
Tri Dao's avatar
Tri Dao committed
283
                                              'relu', 'sqrelu', 'glu', 'swiglu', 'geglu']
284
285
286
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
287
288
289
290
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
        # These 2 options are for OPT-350m
        self.prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
291
        use_rms_norm = getattr(config, 'rms_norm', False)
Tri Dao's avatar
Tri Dao committed
292
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
Tri Dao's avatar
Tri Dao committed
293
294
        # For GPT-J, GPT-NeoX
        self.parallel_block = getattr(config, 'parallel_block', False)
Tri Dao's avatar
Tri Dao committed
295

296
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
297
298
299
300
            self.embeddings = GPT2Embeddings(
                config.hidden_size, vocab_size, config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs
            )
301
302
        else:
            self.embeddings = ParallelGPT2Embeddings(
303
                config.hidden_size, vocab_size, config.max_position_embeddings,
304
305
                process_group=process_group, sequence_parallel=self.sequence_parallel,
                **factory_kwargs
306
            )
Tri Dao's avatar
Tri Dao committed
307

Tri Dao's avatar
Tri Dao committed
308
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
309
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
310
311
312
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
313
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
314
315
316
317
        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
                                     for i in range(config.num_hidden_layers)])

Tri Dao's avatar
Tri Dao committed
318
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
319
320
321
322
        if self.fused_dropout_add_ln:
            if ((not self.parallel_block and dropout_add_layer_norm is None)
                or (self.parallel_block and dropout_add_layer_norm_parallel_residual is None)):
                raise ImportError('dropout_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
323
324
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
325
326
327
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
            self.ln_f = norm_cls(config.hidden_size, eps=config.layer_norm_epsilon,
                                 **factory_kwargs)
328
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
329
            for p in self.ln_f.parameters():
330
331
332
333
334
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
335

Tri Dao's avatar
Tri Dao committed
336
337
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
338
339
340
        self.tie_weights()

    def tie_weights(self):
341
        if self.process_group is not None:
342
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
343

344
345
346
347
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return {i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
                for i, layer in enumerate(self.layers)}

Tri Dao's avatar
Tri Dao committed
348
    def forward(self, input_ids, position_ids=None, inference_params=None):
349
350
351
352
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
353
                            if self.process_group is not None and self.sequence_parallel else {})
354
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
355
356
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
357
        residual = None
358
359
        mixer_kwargs = ({'seqlen': input_ids.shape[1]}
                        if self.process_group is not None and self.sequence_parallel else {})
Tri Dao's avatar
Tri Dao committed
360
361
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
362
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
363
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
364
365
366
367
368
369
370
                if not self.parallel_block:
                    hidden_states, residual = layer(hidden_states, residual,
                                                    mixer_kwargs=mixer_kwargs)
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
371
372
373
374
375
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
376
377
378
379
380
381
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
                    residual = ((residual + dropped + dropped2)
                                if residual is not None else dropped + dropped2)
Tri Dao's avatar
Tri Dao committed
382
383
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
384
                # Set prenorm=False here since we don't need the residual
385
                if not self.parallel_block:
386
387
388
                    fused_add_norm_fn = (dropout_add_rms_norm if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm)
                    hidden_states = fused_add_norm_fn(
389
390
391
392
393
                        hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
                        residual_in_fp32=self.residual_in_fp32
                    )
                else:
394
395
396
397
                    fused_add_norm_fn = (dropout_add_rms_norm_parallel_residual
                                         if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm_parallel_residual)
                    hidden_states, _ = fused_add_norm_fn(
398
399
400
401
                        hidden_states, hidden_states2, residual, self.ln_f.weight, self.ln_f.bias,
                        None, None, self.drop_f.p if self.training else 0.0, self.ln_f.eps,
                        prenorm=False, residual_in_fp32=self.residual_in_fp32
                    )
Tri Dao's avatar
Tri Dao committed
402
403
404
        return hidden_states


Tri Dao's avatar
Tri Dao committed
405
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
406

407
408
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
409
        super().__init__(config)
410
411
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
412
        self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
Tri Dao's avatar
Tri Dao committed
413
        lm_head_bias = getattr(config, 'lm_head_bias', False)
414
415
416
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
417
418
419
420
421
422
423
        # This option is for OPT-350m
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
424
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
425
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
426
427
428
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
429
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
430
                embed_dim, vocab_size, process_group, bias=lm_head_bias,
431
432
                sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
433
434
435
436
437
438
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
439
440
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
441
        if self.process_group is not None:
442
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
443

444
445
446
447
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.transformer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype,
                                                         **kwargs)

448
    def forward(self, input_ids, position_ids=None, inference_params=None, last_token_only=False):
Tri Dao's avatar
Tri Dao committed
449
450
451
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
452
453
            last_token_only: whether to return the logit for the last token only,
                of shape (batch_size, vocab_size)
Tri Dao's avatar
Tri Dao committed
454
455
456
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
457
458
        if last_token_only:
            hidden_states = hidden_states[:, -1]
Tri Dao's avatar
Tri Dao committed
459
460
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
461
        lm_logits = self.lm_head(hidden_states)
462
463
464
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
465
            lm_logits = rearrange(lm_logits, '(n b) ... d -> b ... (n d)', b=hidden_states.shape[0])
Tri Dao's avatar
Tri Dao committed
466
467
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
468

Tri Dao's avatar
Tri Dao committed
469
470
471
472
473
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
        if 'transformer.ln_0.weight' in state_dict:
Tri Dao's avatar
Tri Dao committed
474
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight')
            ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias')
            state_dict['transformer.ln_f.weight'] = ln_weight
            state_dict['transformer.ln_f.bias'] = ln_bias
            for l in reversed(range(n_layers)):
                ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight')
                ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias')
                state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight
                state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias
                if l > 0:
                    ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight')
                    ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias')
                    state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight
                    state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias
            ln_weight = state_dict.pop('transformer.ln_0.weight')
            ln_bias = state_dict.pop('transformer.ln_0.bias')
            state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight
            state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias
        return super().load_state_dict(state_dict, strict=strict)

495

Tri Dao's avatar
Tri Dao committed
496
497
498
499
500
501
502
503
504
505
506
507
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    def shard_first_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
508
509
510
511
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[0] // world_size
            state_dict[key] = x[rank * dim:(rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
512
513

    def shard_last_dim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
514
515
516
517
        if key in state_dict:
            x = state_dict[key]
            dim = x.shape[-1] // world_size
            state_dict[key] = x[..., rank * dim:(rank + 1) * dim]
Tri Dao's avatar
Tri Dao committed
518
519

    def shard_qkv_headdim(state_dict, key):
Tri Dao's avatar
Tri Dao committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        if key in state_dict:
            n_head = config.n_head
            n_head_kv = getattr(config, 'n_head_kv', n_head)
            assert n_head % world_size == 0 and n_head_kv % world_size == 0
            if n_head_kv == n_head:
                x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3)
                dim = x.shape[1] // world_size
                state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim],
                                            'three d ... -> (three d) ...')
            else:
                n_head_per_rank = n_head // world_size
                n_head_kv_per_rank = n_head_kv // world_size
                x = rearrange(state_dict[key], '(nheadqkv headdim) ... -> nheadqkv headdim ...',
                              nheadqkv=n_head + 2 * n_head_kv)
                state_dict[key] = rearrange(torch.cat([
                    x[rank * n_head_per_rank:(rank + 1) * n_head_per_rank],
                    x[n_head + rank * n_head_kv_per_rank:n_head + (rank + 1) * n_head_kv_per_rank],
                    x[n_head + n_head_kv + rank * n_head_kv_per_rank:n_head + n_head_kv + (rank + 1) * n_head_kv_per_rank],
                ], dim=0), "nheadqkv headdim ... -> (nheadqkv headdim) ...")
Tri Dao's avatar
Tri Dao committed
539
540
541
542
543
544
545
546
547
548
549

    shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        shard_first_dim(state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight')
    for i in range(config.num_hidden_layers):
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
550
            state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias', None)
Tri Dao's avatar
Tri Dao committed
551
552
553
554
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')
        if rank != 0:
Tri Dao's avatar
Tri Dao committed
555
            state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias', None)
Tri Dao's avatar
Tri Dao committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    return state_dict


def combine_state_dicts_tp(state_dicts, config):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

Tri Dao's avatar
Tri Dao committed
572
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
573
574
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
575
576
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
577
578

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
579
580
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
581
582

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
583
584
585
586
587
        n_head = config.n_head
        n_head_kv = getattr(config, 'n_head_kv', n_head)
        assert n_head % world_size == 0 and n_head_kv % world_size == 0
        n_head_per_rank = n_head // world_size
        n_head_kv_per_rank = n_head_kv // world_size
Tri Dao's avatar
Tri Dao committed
588
        if key in state_dict:
Tri Dao's avatar
Tri Dao committed
589
590
591
592
593
594
595
596
597
598
599
            if n_head_kv == n_head:
                xs = [rearrange(s[key], '(three d) ... -> three d ...', three=3) for s in state_dicts]
                state_dict[key] = rearrange(torch.cat(xs, dim=1), 'three d ... -> (three d) ...')
            else:
                xs = [rearrange(s[key], '(nheadqkv headdim) ... -> nheadqkv headdim ...',
                                nheadqkv=n_head + 2 * n_head_kv) for s in state_dicts]
                state_dict[key] = rearrange(torch.cat([
                    torch.cat([x[:n_head_per_rank] for x in xs], dim=0),
                    torch.cat([x[n_head_per_rank:n_head_per_rank + n_head_kv_per_rank] for x in xs], dim=0),
                    torch.cat([x[-n_head_kv_per_rank:] for x in xs], dim=0),
                ], dim=0), "nheadqkv headdim ... -> (nheadqkv headdim) ...")
Tri Dao's avatar
Tri Dao committed
600
601
602
603
604

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
            xs = [rearrange(s[key], '(two d) ... -> two d ...', two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), 'two d ... -> (two d) ...')
Tri Dao's avatar
Tri Dao committed
605
606
607
608
609
610
611

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
    combine_word_embeddings(state_dicts, state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        combine_word_embeddings(state_dicts, state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        combine_dim(state_dicts, state_dict, 'transformer.embeddings.position_embeddings.weight', -1)
Tri Dao's avatar
Tri Dao committed
612
613
    mlp_combine_fn = (combine_gated_mlp if config.activation_function in ['glu', 'swiglu', 'geglu']
                      else partial(combine_dim, dim=0))
Tri Dao's avatar
Tri Dao committed
614
615
616
617
    for i in range(config.num_hidden_layers):
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.out_proj.weight', -1)
Tri Dao's avatar
Tri Dao committed
618
        mlp_combine_fn(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
Tri Dao's avatar
Tri Dao committed
619
620
621
622
623
624
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.bias', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc2.weight', -1)
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
625
626
627
628
629
630
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
631
632
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
633
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
634
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
635
636
637
638
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
639
640
641
642
643
    def key_mapping_ln(key):
        key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
671
672


Tri Dao's avatar
Tri Dao committed
673
674
675
676
677
678
679
680
681
682
683
684
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
        key = re.sub(r'^language_model.encoder.', 'transformer.', key)
        key = re.sub(r'^language_model.', 'transformer.', key)
        return key
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('transformer.embedding.word_embeddings.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
685
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
Tri Dao's avatar
Tri Dao committed
686
687
    vocab_size = (math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
                  * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
688
689
690
691
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
692

Tri Dao's avatar
Tri Dao committed
693
694
695
696
697
698
699
700
701
    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^transformer.final_layernorm.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^transformer.layers.(\d+).input_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
702

Tri Dao's avatar
Tri Dao committed
703
704
705
706
707
708
709
710
    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
711

Tri Dao's avatar
Tri Dao committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    # Attention
    def key_mapping_attn(key):
        key = re.sub(r'^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq',
                     r'transformer.layers.\1.mixer.rotary_emb.inv_freq', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)',
                     r'transformer.layers.\1.mixer.Wqkv.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.(weight|bias)',
                     r'transformer.layers.\1.mixer.out_proj.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
        Wqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = rearrange(
            Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
            three=3, headdim=headdim
        )
        bqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.bias')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.bias'] = rearrange(
            bqkv, '(nheads three headdim) -> (three nheads headdim)',
            three=3, headdim=headdim
        )
736
737

    return state_dict