Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b24ead87
Unverified
Commit
b24ead87
authored
Apr 26, 2021
by
LSinev
Committed by
GitHub
Apr 26, 2021
Browse files
fix some typos in docs, comments, logging/errors (#11432)
parent
e3e70f95
Changes
77
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
26 additions
and
26 deletions
+26
-26
src/transformers/commands/add_new_model.py
src/transformers/commands/add_new_model.py
+2
-2
src/transformers/data/processors/squad.py
src/transformers/data/processors/squad.py
+1
-1
src/transformers/feature_extraction_sequence_utils.py
src/transformers/feature_extraction_sequence_utils.py
+1
-1
src/transformers/file_utils.py
src/transformers/file_utils.py
+1
-1
src/transformers/generation_logits_process.py
src/transformers/generation_logits_process.py
+1
-1
src/transformers/generation_stopping_criteria.py
src/transformers/generation_stopping_criteria.py
+1
-1
src/transformers/generation_tf_utils.py
src/transformers/generation_tf_utils.py
+2
-2
src/transformers/generation_utils.py
src/transformers/generation_utils.py
+1
-1
src/transformers/modeling_flax_utils.py
src/transformers/modeling_flax_utils.py
+1
-1
src/transformers/modeling_outputs.py
src/transformers/modeling_outputs.py
+2
-2
src/transformers/modeling_tf_pytorch_utils.py
src/transformers/modeling_tf_pytorch_utils.py
+1
-1
src/transformers/modeling_tf_utils.py
src/transformers/modeling_tf_utils.py
+2
-2
src/transformers/modeling_utils.py
src/transformers/modeling_utils.py
+1
-1
src/transformers/models/auto/modeling_auto.py
src/transformers/models/auto/modeling_auto.py
+1
-1
src/transformers/models/auto/modeling_flax_auto.py
src/transformers/models/auto/modeling_flax_auto.py
+1
-1
src/transformers/models/auto/modeling_tf_auto.py
src/transformers/models/auto/modeling_tf_auto.py
+1
-1
src/transformers/models/bart/configuration_bart.py
src/transformers/models/bart/configuration_bart.py
+1
-1
src/transformers/models/bart/modeling_bart.py
src/transformers/models/bart/modeling_bart.py
+3
-3
src/transformers/models/bart/modeling_tf_bart.py
src/transformers/models/bart/modeling_tf_bart.py
+1
-1
src/transformers/models/bert_japanese/tokenization_bert_japanese.py
...ormers/models/bert_japanese/tokenization_bert_japanese.py
+1
-1
No files found.
src/transformers/commands/add_new_model.py
View file @
b24ead87
...
@@ -57,14 +57,14 @@ class AddNewModelCommand(BaseTransformersCLICommand):
...
@@ -57,14 +57,14 @@ class AddNewModelCommand(BaseTransformersCLICommand):
if
not
_has_cookiecutter
:
if
not
_has_cookiecutter
:
raise
ImportError
(
raise
ImportError
(
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"the folowing at the root of your `transformers` clone:
\n\n\t
$ pip install -e .[modelcreation]
\n
"
"the fol
l
owing at the root of your `transformers` clone:
\n\n\t
$ pip install -e .[modelcreation]
\n
"
)
)
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
directories
=
[
directory
for
directory
in
os
.
listdir
()
if
"cookiecutter-template-"
==
directory
[:
22
]]
directories
=
[
directory
for
directory
in
os
.
listdir
()
if
"cookiecutter-template-"
==
directory
[:
22
]]
if
len
(
directories
)
>
0
:
if
len
(
directories
)
>
0
:
raise
ValueError
(
raise
ValueError
(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders starti
g
n with `cookiecutter-template-` or "
"Please clean your directory by removing all folders startin
g
with `cookiecutter-template-` or "
"change your working directory."
"change your working directory."
)
)
...
...
src/transformers/data/processors/squad.py
View file @
b24ead87
...
@@ -244,7 +244,7 @@ def squad_convert_example_to_features(
...
@@ -244,7 +244,7 @@ def squad_convert_example_to_features(
cls_index
=
span
[
"input_ids"
].
index
(
tokenizer
.
cls_token_id
)
cls_index
=
span
[
"input_ids"
].
index
(
tokenizer
.
cls_token_id
)
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implem also keep the classification token (set to 0)
# Original TF implem
entation
also keep the classification token (set to 0)
p_mask
=
np
.
ones_like
(
span
[
"token_type_ids"
])
p_mask
=
np
.
ones_like
(
span
[
"token_type_ids"
])
if
tokenizer
.
padding_side
==
"right"
:
if
tokenizer
.
padding_side
==
"right"
:
p_mask
[
len
(
truncated_query
)
+
sequence_added_tokens
:]
=
0
p_mask
[
len
(
truncated_query
)
+
sequence_added_tokens
:]
=
0
...
...
src/transformers/feature_extraction_sequence_utils.py
View file @
b24ead87
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""
"""
Sequence feature extraction class for common feature extr
c
actors to preprocess sequences.
Sequence feature extraction class for common feature extractors to preprocess sequences.
"""
"""
from
typing
import
Dict
,
List
,
Optional
,
Union
from
typing
import
Dict
,
List
,
Optional
,
Union
...
...
src/transformers/file_utils.py
View file @
b24ead87
...
@@ -551,7 +551,7 @@ BACKENDS_MAPPING = OrderedDict(
...
@@ -551,7 +551,7 @@ BACKENDS_MAPPING = OrderedDict(
(
"sklearn"
,
(
is_sklearn_available
,
SKLEARN_IMPORT_ERROR
)),
(
"sklearn"
,
(
is_sklearn_available
,
SKLEARN_IMPORT_ERROR
)),
(
"speech"
,
(
is_speech_available
,
SPEECH_IMPORT_ERROR
)),
(
"speech"
,
(
is_speech_available
,
SPEECH_IMPORT_ERROR
)),
(
"tf"
,
(
is_tf_available
,
TENSORFLOW_IMPORT_ERROR
)),
(
"tf"
,
(
is_tf_available
,
TENSORFLOW_IMPORT_ERROR
)),
(
"token
z
iers"
,
(
is_tokenizers_available
,
TOKENIZERS_IMPORT_ERROR
)),
(
"tokeni
z
ers"
,
(
is_tokenizers_available
,
TOKENIZERS_IMPORT_ERROR
)),
(
"torch"
,
(
is_torch_available
,
PYTORCH_IMPORT_ERROR
)),
(
"torch"
,
(
is_torch_available
,
PYTORCH_IMPORT_ERROR
)),
(
"vision"
,
(
is_vision_available
,
VISION_IMPORT_ERROR
)),
(
"vision"
,
(
is_vision_available
,
VISION_IMPORT_ERROR
)),
]
]
...
...
src/transformers/generation_logits_process.py
View file @
b24ead87
...
@@ -446,7 +446,7 @@ class NoBadWordsLogitsProcessor(LogitsProcessor):
...
@@ -446,7 +446,7 @@ class NoBadWordsLogitsProcessor(LogitsProcessor):
class
PrefixConstrainedLogitsProcessor
(
LogitsProcessor
):
class
PrefixConstrainedLogitsProcessor
(
LogitsProcessor
):
r
"""
r
"""
:class:`transformers.LogitsProcessor` that enforces contrained generation and is useful for prefix-conditioned
:class:`transformers.LogitsProcessor` that enforces con
s
trained generation and is useful for prefix-conditioned
constrained generation. See `Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__ for more
constrained generation. See `Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__ for more
information.
information.
...
...
src/transformers/generation_stopping_criteria.py
View file @
b24ead87
...
@@ -23,7 +23,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
...
@@ -23,7 +23,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax.
or scores for each vocabulary token after SoftMax.
kwargs:
kwargs:
Additional stopping critera specific kwargs.
Additional stopping criter
i
a specific kwargs.
Return:
Return:
:obj:`bool`. :obj:`False` indicates we should continue, :obj:`True` indicates we should stop.
:obj:`bool`. :obj:`False` indicates we should continue, :obj:`True` indicates we should stop.
...
...
src/transformers/generation_tf_utils.py
View file @
b24ead87
...
@@ -442,8 +442,8 @@ class TFGenerationMixin:
...
@@ -442,8 +442,8 @@ class TFGenerationMixin:
**
kwargs
**
kwargs
):
):
"""
"""
Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated
Generate sequences for each example without beam search (num_beams == 1). All returned sequence
s
are generated
independ
a
ntly.
independ
e
ntly.
"""
"""
# length of generated sentences / unfinished sentences
# length of generated sentences / unfinished sentences
...
...
src/transformers/generation_utils.py
View file @
b24ead87
...
@@ -821,7 +821,7 @@ class GenerationMixin:
...
@@ -821,7 +821,7 @@ class GenerationMixin:
... "at least two people were killed in a suspected bomb attack on a passenger bus "
... "at least two people were killed in a suspected bomb attack on a passenger bus "
... "in the strife-torn southern philippines on monday , the military said."
... "in the strife-torn southern philippines on monday , the military said."
... )
... )
>>> # encode input contex
>>> # encode input contex
t
>>> input_ids = tokenizer(document, return_tensors="pt").input_ids
>>> input_ids = tokenizer(document, return_tensors="pt").input_ids
>>> # generate 3 independent sequences using beam search decoding (5 beams)
>>> # generate 3 independent sequences using beam search decoding (5 beams)
>>> # with T5 encoder-decoder model conditioned on short news article.
>>> # with T5 encoder-decoder model conditioned on short news article.
...
...
src/transformers/modeling_flax_utils.py
View file @
b24ead87
...
@@ -94,7 +94,7 @@ class FlaxPreTrainedModel(PushToHubMixin):
...
@@ -94,7 +94,7 @@ class FlaxPreTrainedModel(PushToHubMixin):
self
.
key
=
PRNGKey
(
seed
)
self
.
key
=
PRNGKey
(
seed
)
self
.
dtype
=
dtype
self
.
dtype
=
dtype
# random
e
ly initialized parameters
# randomly initialized parameters
random_params
=
self
.
init_weights
(
self
.
key
,
input_shape
)
random_params
=
self
.
init_weights
(
self
.
key
,
input_shape
)
# save required_params as set
# save required_params as set
...
...
src/transformers/modeling_outputs.py
View file @
b24ead87
...
@@ -343,7 +343,7 @@ class CausalLMOutputWithPast(ModelOutput):
...
@@ -343,7 +343,7 @@ class CausalLMOutputWithPast(ModelOutput):
Language modeling loss (for next-token prediction).
Language modeling loss (for next-token prediction).
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`tuple(tup
e
l(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
past_key_values (:obj:`tuple(tupl
e
(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
...
@@ -423,7 +423,7 @@ class SequenceClassifierOutputWithPast(ModelOutput):
...
@@ -423,7 +423,7 @@ class SequenceClassifierOutputWithPast(ModelOutput):
Classification (or regression if config.num_labels==1) loss.
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (:obj:`tuple(tup
e
l(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
past_key_values (:obj:`tuple(tupl
e
(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
...
...
src/transformers/modeling_tf_pytorch_utils.py
View file @
b24ead87
...
@@ -51,7 +51,7 @@ def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove="")
...
@@ -51,7 +51,7 @@ def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove="")
)
# '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)
)
# '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)
tf_name
=
re
.
sub
(
r
"//+"
,
"/"
,
tf_name
)
# Remove empty levels at the end
tf_name
=
re
.
sub
(
r
"//+"
,
"/"
,
tf_name
)
# Remove empty levels at the end
tf_name
=
tf_name
.
split
(
"/"
)
# Convert from TF2.0 '/' separators to PyTorch '.' separators
tf_name
=
tf_name
.
split
(
"/"
)
# Convert from TF2.0 '/' separators to PyTorch '.' separators
# Some weights have a single name with
t
out "/" such as final_logits_bias in BART
# Some weights have a single name without "/" such as final_logits_bias in BART
if
len
(
tf_name
)
>
1
:
if
len
(
tf_name
)
>
1
:
tf_name
=
tf_name
[
1
:]
# Remove level zero
tf_name
=
tf_name
[
1
:]
# Remove level zero
...
...
src/transformers/modeling_tf_utils.py
View file @
b24ead87
...
@@ -659,7 +659,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
...
@@ -659,7 +659,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
Args:
Args:
inputs (:obj:`Dict[str, tf.Tensor]`):
inputs (:obj:`Dict[str, tf.Tensor]`):
The input of the saved model as a diction
n
ary of tensors.
The input of the saved model as a dictionary of tensors.
"""
"""
output
=
self
.
call
(
inputs
)
output
=
self
.
call
(
inputs
)
...
@@ -944,7 +944,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
...
@@ -944,7 +944,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
vectors from the end. If not provided or :obj:`None`, just returns None
vectors from the end. If not provided or :obj:`None`, just returns None
Return:
Return:
:obj:`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different
s of
the
:obj:`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different
from
the
input ones.
input ones.
"""
"""
new_lm_head_decoder
=
old_lm_head_decoder
new_lm_head_decoder
=
old_lm_head_decoder
...
...
src/transformers/modeling_utils.py
View file @
b24ead87
...
@@ -291,7 +291,7 @@ class ModuleUtilsMixin:
...
@@ -291,7 +291,7 @@ class ModuleUtilsMixin:
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (:obj:`int`):
num_hidden_layers (:obj:`int`):
The number of hidden layers in the model.
The number of hidden layers in the model.
is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`):
is_attention_chunked: (:obj:`bool`, `optional
`
, defaults to :obj:`False`):
Whether or not the attentions scores are computed by chunks or not.
Whether or not the attentions scores are computed by chunks or not.
Returns:
Returns:
...
...
src/transformers/models/auto/modeling_auto.py
View file @
b24ead87
...
@@ -716,7 +716,7 @@ AutoModelForPreTraining = auto_class_factory(
...
@@ -716,7 +716,7 @@ AutoModelForPreTraining = auto_class_factory(
"AutoModelForPreTraining"
,
MODEL_FOR_PRETRAINING_MAPPING
,
head_doc
=
"pretraining"
"AutoModelForPreTraining"
,
MODEL_FOR_PRETRAINING_MAPPING
,
head_doc
=
"pretraining"
)
)
# Private on pu
p
rose, the public class will add the deprecation warnings.
# Private on pur
p
ose, the public class will add the deprecation warnings.
_AutoModelWithLMHead
=
auto_class_factory
(
_AutoModelWithLMHead
=
auto_class_factory
(
"AutoModelWithLMHead"
,
MODEL_WITH_LM_HEAD_MAPPING
,
head_doc
=
"language modeling"
"AutoModelWithLMHead"
,
MODEL_WITH_LM_HEAD_MAPPING
,
head_doc
=
"language modeling"
)
)
...
...
src/transformers/models/auto/modeling_flax_auto.py
View file @
b24ead87
...
@@ -103,7 +103,7 @@ FlaxAutoModelForMaskedLM = auto_class_factory(
...
@@ -103,7 +103,7 @@ FlaxAutoModelForMaskedLM = auto_class_factory(
)
)
FlaxAutoModelForSequenceClassification
=
auto_class_factory
(
FlaxAutoModelForSequenceClassification
=
auto_class_factory
(
"
A
FlaxutoModelForSequenceClassification"
,
"Flax
A
utoModelForSequenceClassification"
,
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
,
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
,
head_doc
=
"sequence classification"
,
head_doc
=
"sequence classification"
,
)
)
...
...
src/transformers/models/auto/modeling_tf_auto.py
View file @
b24ead87
...
@@ -469,7 +469,7 @@ TFAutoModelForPreTraining = auto_class_factory(
...
@@ -469,7 +469,7 @@ TFAutoModelForPreTraining = auto_class_factory(
"TFAutoModelForPreTraining"
,
TF_MODEL_FOR_PRETRAINING_MAPPING
,
head_doc
=
"pretraining"
"TFAutoModelForPreTraining"
,
TF_MODEL_FOR_PRETRAINING_MAPPING
,
head_doc
=
"pretraining"
)
)
# Private on pu
p
rose, the public class will add the deprecation warnings.
# Private on pur
p
ose, the public class will add the deprecation warnings.
_TFAutoModelWithLMHead
=
auto_class_factory
(
_TFAutoModelWithLMHead
=
auto_class_factory
(
"TFAutoModelWithLMHead"
,
TF_MODEL_WITH_LM_HEAD_MAPPING
,
head_doc
=
"language modeling"
"TFAutoModelWithLMHead"
,
TF_MODEL_WITH_LM_HEAD_MAPPING
,
head_doc
=
"language modeling"
)
)
...
...
src/transformers/models/bart/configuration_bart.py
View file @
b24ead87
...
@@ -171,7 +171,7 @@ class BartConfig(PretrainedConfig):
...
@@ -171,7 +171,7 @@ class BartConfig(PretrainedConfig):
self
.
gradient_checkpointing
=
gradient_checkpointing
self
.
gradient_checkpointing
=
gradient_checkpointing
self
.
scale_embedding
=
scale_embedding
# scale factor will be sqrt(d_model) if True
self
.
scale_embedding
=
scale_embedding
# scale factor will be sqrt(d_model) if True
# ensure backward compatibilty for BART CNN models
# ensure backward compatibil
i
ty for BART CNN models
if
self
.
forced_bos_token_id
is
None
and
kwargs
.
get
(
"force_bos_token_to_be_generated"
,
False
):
if
self
.
forced_bos_token_id
is
None
and
kwargs
.
get
(
"force_bos_token_to_be_generated"
,
False
):
self
.
forced_bos_token_id
=
self
.
bos_token_id
self
.
forced_bos_token_id
=
self
.
bos_token_id
warnings
.
warn
(
warnings
.
warn
(
...
...
src/transformers/models/bart/modeling_bart.py
View file @
b24ead87
...
@@ -111,7 +111,7 @@ class BartLearnedPositionalEmbedding(nn.Embedding):
...
@@ -111,7 +111,7 @@ class BartLearnedPositionalEmbedding(nn.Embedding):
def
__init__
(
self
,
num_embeddings
:
int
,
embedding_dim
:
int
):
def
__init__
(
self
,
num_embeddings
:
int
,
embedding_dim
:
int
):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models dont have this hack
# and adjust num_embeddings appropriately. Other models don
'
t have this hack
self
.
offset
=
2
self
.
offset
=
2
super
().
__init__
(
num_embeddings
+
self
.
offset
,
embedding_dim
)
super
().
__init__
(
num_embeddings
+
self
.
offset
,
embedding_dim
)
...
@@ -236,9 +236,9 @@ class BartAttention(nn.Module):
...
@@ -236,9 +236,9 @@ class BartAttention(nn.Module):
attn_weights
=
attn_weights
.
view
(
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
)
attn_weights
=
attn_weights
.
view
(
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
)
if
output_attentions
:
if
output_attentions
:
# this operation is a bit akward, but it's required to
# this operation is a bit a
w
kward, but it's required to
# make sure that attn_weights keeps its gradient.
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# In order to do so, attn_weights have to
be
reshaped
# twice and have to be reused in the following
# twice and have to be reused in the following
attn_weights_reshaped
=
attn_weights
.
view
(
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
)
attn_weights_reshaped
=
attn_weights
.
view
(
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
)
attn_weights
=
attn_weights_reshaped
.
view
(
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
)
attn_weights
=
attn_weights_reshaped
.
view
(
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
)
...
...
src/transformers/models/bart/modeling_tf_bart.py
View file @
b24ead87
...
@@ -116,7 +116,7 @@ class TFBartLearnedPositionalEmbedding(TFSharedEmbeddings):
...
@@ -116,7 +116,7 @@ class TFBartLearnedPositionalEmbedding(TFSharedEmbeddings):
def
__init__
(
self
,
num_embeddings
:
int
,
embedding_dim
:
int
,
**
kwargs
):
def
__init__
(
self
,
num_embeddings
:
int
,
embedding_dim
:
int
,
**
kwargs
):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models dont have this hack
# and adjust num_embeddings appropriately. Other models don
'
t have this hack
self
.
offset
=
2
self
.
offset
=
2
super
().
__init__
(
num_embeddings
+
self
.
offset
,
embedding_dim
,
**
kwargs
)
super
().
__init__
(
num_embeddings
+
self
.
offset
,
embedding_dim
,
**
kwargs
)
...
...
src/transformers/models/bert_japanese/tokenization_bert_japanese.py
View file @
b24ead87
...
@@ -304,7 +304,7 @@ class MecabTokenizer:
...
@@ -304,7 +304,7 @@ class MecabTokenizer:
class
CharacterTokenizer
:
class
CharacterTokenizer
:
"""Runs Character token
z
iation."""
"""Runs Character tokeni
z
ation."""
def
__init__
(
self
,
vocab
,
unk_token
,
normalize_text
=
True
):
def
__init__
(
self
,
vocab
,
unk_token
,
normalize_text
=
True
):
"""
"""
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment