"tests/models/vscode:/vscode.git/clone" did not exist on "feec56959afe480e57b2acc177111ae18a5ea757"
test_modeling_tf_common.py 119 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
import unittest.mock as mock
25
from dataclasses import fields
26
from importlib import import_module
Matt's avatar
Matt committed
27
from math import isnan
28
from typing import List, Tuple, get_type_hints
thomwolf's avatar
thomwolf committed
29

30
from datasets import Dataset
31
from huggingface_hub import HfFolder, Repository, delete_repo
32
from huggingface_hub.file_download import http_get
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from requests.exceptions import HTTPError
34

35
from transformers import is_tf_available, is_torch_available
36
from transformers.configuration_utils import PretrainedConfig
37
from transformers.models.auto import get_values
38
from transformers.testing_utils import (  # noqa: F401
39
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    USER,
41
    CaptureLogger,
42
    CaptureStdout,
Lysandre Debut's avatar
Lysandre Debut committed
43
44
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
45
    is_staging_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
    require_safetensors,
Lysandre Debut's avatar
Lysandre Debut committed
47
    require_tf,
48
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
49
    slow,
50
    tooslow,
51
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
52
)
53
54
55
56
57
58
59
60
from transformers.utils import (
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
    SAFE_WEIGHTS_NAME,
    TF2_WEIGHTS_INDEX_NAME,
    TF2_WEIGHTS_NAME,
    logging,
)
61
from transformers.utils.generic import ModelOutput
62

Aymeric Augustin's avatar
Aymeric Augustin committed
63

64
65
66
logger = logging.get_logger(__name__)


67
if is_tf_available():
Arthur's avatar
Arthur committed
68
    import h5py
thomwolf's avatar
thomwolf committed
69
    import numpy as np
70
    import tensorflow as tf
71

72
    from transformers import (
73
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
74
        TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
75
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
76
        TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
77
        TF_MODEL_FOR_MASKED_LM_MAPPING,
78
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
79
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
80
        TF_MODEL_FOR_PRETRAINING_MAPPING,
81
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
82
        TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
83
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
84
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
85
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
86
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
87
        BertConfig,
88
        PreTrainedModel,
89
        PushToHubCallback,
90
        RagRetriever,
91
        TFAutoModel,
92
        TFAutoModelForSequenceClassification,
93
        TFBertForMaskedLM,
94
        TFBertForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
95
        TFBertModel,
96
        TFPreTrainedModel,
97
        TFRagModel,
98
        TFSharedEmbeddings,
99
    )
100
    from transformers.generation import (
101
102
103
104
105
106
107
108
109
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
110
    from transformers.modeling_tf_utils import tf_shard_checkpoint, unpack_inputs
Joao Gante's avatar
Joao Gante committed
111
    from transformers.tf_utils import stable_softmax
112

113
114
    tf.config.experimental.enable_tensor_float_32_execution(False)

Julien Chaumond's avatar
Julien Chaumond committed
115
116
117
118
119
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
120
121
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
122
                )
Julien Plu's avatar
Julien Plu committed
123
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
124
125
126
127
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
128

129
130
131
if is_torch_available():
    import torch

Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
    from transformers import BertModel

134

thomwolf's avatar
thomwolf committed
135
136
137
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
138
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
139
140
141
142
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def _return_type_has_loss(model):
    return_type = get_type_hints(model.call)
    if "return" not in return_type:
        return False
    return_type = return_type["return"]
    if hasattr(return_type, "__args__"):  # Awkward check for union because UnionType only turns up in 3.10
        for type_annotation in return_type.__args__:
            if inspect.isclass(type_annotation) and issubclass(type_annotation, ModelOutput):
                field_names = [field.name for field in fields(type_annotation)]
                if "loss" in field_names:
                    return True
        return False
    elif isinstance(return_type, tuple):
        return False
    elif isinstance(return_type, ModelOutput):
        class_fields = fields(return_type)
        return "loss" in class_fields
    return False


163
164
165
166
@require_tf
class TFModelTesterMixin:
    model_tester = None
    all_model_classes = ()
167
    all_generative_model_classes = ()
168
    test_mismatched_shapes = True
169
    test_resize_embeddings = True
170
    test_head_masking = True
171
    is_encoder_decoder = False
172
    has_attentions = True
173

Lysandre Debut's avatar
Lysandre Debut committed
174
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
175
176
        inputs_dict = copy.deepcopy(inputs_dict)

177
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
178
            inputs_dict = {
179
180
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
181
182
183
                else v
                for k, v in inputs_dict.items()
            }
184
185

        if return_labels:
186
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
187
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
188
189
190
191
            elif model_class in [
                *get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING),
                *get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
            ]:
192
193
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
194
195
196
197
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
198
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
199
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
200
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
201
            elif model_class in [
202
203
204
205
206
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
207
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
208
            ] and "labels" in dict(inspect.signature(model_class.call).parameters):
209
210
211
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
212
213
214
215
216
217
218
219
            elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = tf.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=tf.int32
                )
            elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32)
220
221
222
223
224
            elif model_class.__name__.endswith("ForCTC"):
                # When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
225

226
227
        return inputs_dict

228
229
    def test_initialization(self):
        pass
230

231
232
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
233

234
235
        for model_class in self.all_model_classes:
            model = model_class(config)
236
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
237

238
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
239
                model.save_pretrained(tmpdirname, saved_model=False)
240
241
242
243
244
245
246

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

247
                model = model_class.from_pretrained(tmpdirname)
248
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
249

250
                self.assert_outputs_same(after_outputs, outputs)
251

252
253
254
255
256
257
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
258
259
260
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
261
            new_model = model_class.from_config(model.get_config())
262
263
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
264
265
266
267
268
269
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    @slow
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
            self.assertTrue(os.path.exists(saved_model_dir))

    def test_prepare_serving_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(inputs)
            serving_outputs = model.serving_output(outputs)

            for k, v in serving_outputs.items():
                # Check that we have one of three possible outputs: None, tuple of tensors or a tensor
                if isinstance(v, tuple):
                    self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
                elif v is not None:
                    self.assertIsInstance(v, tf.Tensor)
                else:
                    self.assertIsNone(v)

311
312
313
314
315
316
317
318
319
320
321
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
322
                    "input_ids",
323
324
325
326
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
327
                expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
328
                expected_arg_names.extend(
329
330
331
332
333
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
334
335
336
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
337
338

            else:
Julien Plu's avatar
Julien Plu committed
339
                expected_arg_names = ["input_ids"]
340
341
                self.assertListEqual(arg_names[:1], expected_arg_names)

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

384
    @require_tf2onnx
385
386
387
388
389
390
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
391
        import tf2onnx
392
393
394
395
396
397
398

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

399
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
400

401
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
402

403
404
405
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

406
        tf_main_layer_classes = {
407
408
409
410
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
411
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
412
413
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
414
            for module_member in (getattr(module, module_member_name),)
415
416
417
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
418
        }
419
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
420
421
422
423
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
424
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
425
426
427
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
428

429
430
431
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
432

433
434
435
436
437
438
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
439
440
441
442
443
444
445
446
447
448
449
450
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
451
452
453
454
455
456
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
457
458
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
459
        elif isinstance(after_outputs, dict):
460
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
461
462
        else:
            out_1 = after_outputs[0].numpy()
463
        out_2 = outputs[0].numpy()
464
        self.assertEqual(out_1.shape, out_2.shape)
465
466
467
468
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
469

470
471
472
473
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
474

475
476
477
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
thomwolf's avatar
thomwolf committed
478

479
480
481
482
483
484
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

506
507
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
            "TFTransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
534
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
555

556
557
558
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
559

560
561
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
562

563
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
564

565
566
567
568
569
570
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
                )
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
587

588
589
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
590

591
592
593
594
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
595

596
597
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
598

599
600
601
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
602

603
604
605
606
607
608
609
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])

            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
610

611
612
613
614
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
615

616
617
618
619
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
620
621
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
622
            )
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
        pt_inputs_dict = {}
        for name, key in tf_inputs_dict.items():
            if type(key) == bool:
                pt_inputs_dict[name] = key
            elif name == "input_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "pixel_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "input_features":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            # other general float inputs
            elif tf_inputs_dict[name].dtype.is_floating:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            else:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

        return pt_inputs_dict

    def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
        pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)

        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }

        # send pytorch model to the correct device
        pt_model.to(torch_device)

        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
671
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
672
        import transformers
673
674
675

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
676

677
678
            # Output all for aggressive testing
            config.output_hidden_states = True
679
            config.output_attentions = self.has_attentions
680

681
682
683
684
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
685
686
687
688
689
690

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
691

692
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
693
            tf_inputs_dict_with_labels = self._prepare_for_class(
694
695
696
697
698
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
699

700
701
            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
702
            if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
703
704
                tf_inputs_dict_with_labels = None

705
            # Check we can load pt model in tf and vice-versa with model => model functions
Matt's avatar
Matt committed
706
707
708
709
710
711
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
Lysandre's avatar
Lysandre committed
712

713
714
715
716
717
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
718
719

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
720
            with tempfile.TemporaryDirectory() as tmpdirname:
721
722
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
723
724
725
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
726
727
728

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
729
730
731
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
732

733
734
735
736
737
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
738
739
740

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
741
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
742
743
744
745
746
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
amyeroberts's avatar
amyeroberts committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            elif model_class.__name__ in ["TFWhisperModel", "TFWhisperForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            self.model_tester.num_mel_bins,
                            self.model_tester.seq_length,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
Joao Gante's avatar
Joao Gante committed
781
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
782
                inputs = {
783
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
784
785
786
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
787
                    ),
Julien Plu's avatar
Julien Plu committed
788
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
789
                }
Sayak Paul's avatar
Sayak Paul committed
790
791
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
792
793
794
795
796
797
798
799
800
801
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Matt's avatar
Matt committed
802
            elif model_class.__name__ in ["TFCLIPModel", "TFGroupViTModel", "TFBlipModel"]:
Yih-Dar's avatar
Yih-Dar committed
803
804
805
806
807
808
809
810
811
812
813
814
815
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
816
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
817
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
818
            else:
Yih-Dar's avatar
Yih-Dar committed
819
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
820

821
822
            # Prepare our model
            model = model_class(config)
823
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
824
            # Let's load it from the disk to be sure we can use pretrained weights
825
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
826
                model.save_pretrained(tmpdirname, saved_model=False)
827
828
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
829
            outputs_dict = model(inputs)
830
831
            hidden_states = outputs_dict[0]

832
            # Add a dense layer on top to test integration with other keras modules
833
834
835
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
836
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
837
838
839
840
841
842
843
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
844
845
846
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
847

848
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
849
            outputs_keywords = model(**inputs_keywords)
850
851
852
853
854
855
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
856
857
858
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

859
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
860
        config.return_dict = True
861
862
863
864
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
865

Julien Plu's avatar
Julien Plu committed
866
867
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
868
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
869
870
871
872
873
874
875
876
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
877
878
879
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
880
881
882
883
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
884
            )
Julien Plu's avatar
Julien Plu committed
885
886
887
888
889
890

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
891
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
892
893
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
894

895
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
896
897
898
899
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
900

901
902
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
903
            config.output_attentions = True
904
            model = model_class(config)
905
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
906
907
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
908
909
910

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
911
912
            config.output_hidden_states = True
            model = model_class(config)
913
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
914

915
916
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
917
            check_encoder_attentions_output(outputs)
918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
961
962
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
987
988
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
989
990
991
            else:
                check_attentions_validity(outputs.attentions)

992
993
994
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
995
        def check_hidden_states_output(config, inputs_dict, model_class):
996
            model = model_class(config)
997
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
998
999
1000
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
1001

Julien Plu's avatar
Julien Plu committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
1025

Joseph Liu's avatar
Joseph Liu committed
1026
1027
1028
1029
1030
1031
1032
1033
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

1034
1035
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
1036
        text_in_text_out_models = (
1037
1038
1039
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
1040
        )
Joao Gante's avatar
Joao Gante committed
1041
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
1042
1043
1044

        for model_class in self.all_model_classes:
            model = model_class(config)
1045
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
1046
            if model_class in text_in_text_out_models:
1047
                x = model.get_output_embeddings()
1048
                assert isinstance(x, tf.keras.layers.Layer)
1049
1050
1051
1052
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
1053
1054
1055
1056
1057
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
1058
            else:
1059
                x = model.get_output_embeddings()
1060
                assert x is None
1061
1062
                name = model.get_bias()
                assert name is None
1063
1064
1065
1066
1067
1068

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1069
            first, second = (
1070
1071
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
1072
            )
1073
1074
1075
1076
1077
1078
1079
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
Sylvain Gugger's avatar
Sylvain Gugger committed
1096
1097
1098
1099
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1115
1116
1117
1118
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1119

1120
1121
1122
1123
1124
            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)
1125

1126
1127
1128
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
1129

1130
1131
1132
1133
                if self.has_attentions:
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1134

1135
1136
1137
1138
1139
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(
                        model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                    )
1140

1141
1142
1143
1144
1145
1146
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

1147
1148
            inputs = copy.deepcopy(inputs_dict)

1149
1150
1151
1152
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
1153
                encoder_input_ids = inputs["input_ids"]
1154
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
1155
                del inputs["input_ids"]
1156
1157
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
1158
            if not self.is_encoder_decoder:
1159
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
1160
            else:
1161
1162
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
1163

1164
1165
            inputs = self._prepare_for_class(inputs, model_class)

1166
            model(inputs)
1167

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1187
1188
1189
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1190

1191
    def test_resize_token_embeddings(self):
1192
1193
1194
        # TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on
        # tf.keras.layers.Embedding

1195
1196
1197
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1198
1199

        def _get_word_embedding_weight(model, embedding_layer):
1200
1201
1202
1203
1204
1205
            if isinstance(embedding_layer, tf.keras.layers.Embedding):
                # builds the embeddings layer
                model(model.dummy_inputs)
                return embedding_layer.embeddings
            else:
                return model._get_word_embedding_weight(embedding_layer)
1206

1207
1208
1209
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
1210
                model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
1211
1212
1213
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1214
                # reshape the embeddings
1215
1216
1217
1218
1219
1220
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1221
                assert_size = size if size is not None else config.vocab_size
1222
1223
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1224
1225
                # check that weights remain the same after resizing
                models_equal = True
1226
1227
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1228
1229
1230
                        models_equal = False
                self.assertTrue(models_equal)

1231
1232
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
1233
                        self.assertEqual(new_weight.shape[-1], assert_size)
1234
1235

                        models_equal = True
1236
                        for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)):
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
    # TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs,
    # while passing push CI. Fix the underlying issues and remove the tag.
    @slow
    def test_save_load_after_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # create a model with resized (expended) embeddings
            new_tokens_size = 10
            old_total_size = config.vocab_size
            new_total_size = old_total_size + new_tokens_size
            model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
            model(model.dummy_inputs)  # builds the embeddings layer
            model.resize_token_embeddings(new_total_size)

            # fetch the output for an input exclusively made of new members of the vocabulary
            inputs_dict = copy.deepcopy(original_inputs_dict)
amyeroberts's avatar
amyeroberts committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
            ids_feat_name = None
            if "input_ids" in inputs_dict:
                ids_feat_name = "input_ids"
            elif "decoder_input_ids" in inputs_dict:
                ids_feat_name = "decoder_input_ids"
            else:
                assert False, "No input ids feature found in the inputs dict"

            new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size)
1279
            new_vocab_input_ids += old_total_size
amyeroberts's avatar
amyeroberts committed
1280
            inputs_dict[ids_feat_name] = new_vocab_input_ids
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = new_vocab_input_ids
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = new_vocab_input_ids
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(**prepared_inputs)

            # save and load the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=False)
                model = model_class.from_pretrained(tmpdirname)
                restored_model_outputs = model(**prepared_inputs)

                # check that the output for the restored model is the same
                self.assert_outputs_same(restored_model_outputs, outputs)

    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
        reason="This test always passes on CPU.",
    )
    def test_embeddings_out_of_bounds_raise_exception(self):
        # TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it.
        # This test should only fail on GPU for models where we haven't added the safety check.
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            inputs_dict = copy.deepcopy(original_inputs_dict)
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9)
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            with self.assertRaises(tf.errors.InvalidArgumentError):
                model(**prepared_inputs)

1319
    def test_lm_head_model_random_no_beam_search_generate(self):
1320
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1321
        input_ids = inputs_dict.get("input_ids", None)
1322

1323
        # iterate over all generative models
1324
1325
1326
1327
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1328
                # if bos token id is not defined model needs input_ids
1329
                with self.assertRaises(ValueError):
1330
                    model.generate(do_sample=True, max_length=5)
1331
                # num_return_sequences = 1
1332
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1333
1334
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1335
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1336

1337
            with self.assertRaises(ValueError):
1338
                # generating multiple sequences when no beam search generation
1339
1340
1341
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1342
1343
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1344
1345

            # check bad words tokens language generation
1346
1347
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1348
            output_tokens = model.generate(
1349
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1350
            )
1351
            # only count generated tokens
1352
1353
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1354

1355
1356
1357
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1358
1359
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1388
1389
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1390
        input_ids = inputs_dict.get("input_ids", None)
1391
1392
1393
1394
1395

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1396
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1397
1398
1399
1400
1401
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

1402
            with self.assertRaises(ValueError):
1403
1404
1405
1406
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1407
1408
1409
1410
1411
1412
1413
1414
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1415
1416
1417
1418
1419
1420
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1421
            output_tokens = model.generate(
1422
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1423
            )
1424
            # only count generated tokens
1425
1426
1427
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1428
1429
1430
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1431
1432
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1463
1464
1465
1466
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1467
1468
1469
1470
            if not getattr(model, "hf_compute_loss", None) and not _return_type_has_loss(model):
                continue
            # The number of elements in the loss should be the same as the number of elements in the label
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1471
            added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
            if not added_label_names:
                continue  # This test is only for models with easily-separable labels
            added_label = prepared_for_class[added_label_names[0]]
            expected_loss_size = added_label.shape.as_list()[:1]

            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)

            loss = model(model_input, **prepared_for_class)[0]
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss when we mask some positions
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)
            if "labels" in prepared_for_class:
                labels = prepared_for_class["labels"].numpy()
                if len(labels.shape) > 1 and labels.shape[1] != 1:
                    labels[0] = -100
                    prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                    loss = model(model_input, **prepared_for_class)[0]
                    self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
                    self.assertTrue(not np.any(np.isnan(loss.numpy())))

            # Test that model correctly compute the loss with a dict
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            loss = model(prepared_for_class)[0]
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss with a tuple
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

            # Get keys that were added with the _prepare_for_class function
            label_keys = prepared_for_class.keys() - inputs_dict.keys()
            signature = inspect.signature(model.call).parameters
            signature_names = list(signature.keys())

            # Create a dictionary holding the location of the tensors in the tuple
            tuple_index_mapping = {0: input_name}
            for label_key in label_keys:
                label_key_index = signature_names.index(label_key)
                tuple_index_mapping[label_key_index] = label_key
            sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
            # Initialize a list with their default values, update the values and convert to a tuple
            list_input = []

            for name in signature_names:
                if name != "kwargs":
                    list_input.append(signature[name].default)

            for index, value in sorted_tuple_index_mapping:
                list_input[index] = prepared_for_class[value]

            tuple_input = tuple(list_input)

            # Send to model
            loss = model(tuple_input[:-1])[0]

            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1535

1536
1537
1538
    def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3):
        self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))

1539
1540
1541
1542
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
            if not getattr(model, "hf_compute_loss", False) and not _return_type_has_loss(model):
                continue
            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            # Is there a better way to remove these decoder inputs?
            # We also remove "return_loss" as this is covered by the train_step when using fit()
            prepared_for_class = {
                key: val
                for key, val in prepared_for_class.items()
                if key
                not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "decoder_input_ids", "return_loss")
            }
1555

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
            accuracy_classes = [
                "ForPreTraining",
                "ForCausalLM",
                "ForMaskedLM",
                "ForQuestionAnswering",
                "ForMultipleChoice",
                "ForSequenceClassification",
                "ForTokenClassification",
                "ForNextSentencePrediction",
                "LMHeadModel",
            ]
            for accuracy_class in accuracy_classes:
                if model.__class__.__name__.endswith(accuracy_class):
                    metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
                    break
            else:
                metrics = []

1574
1575
1576
1577
1578
            if hasattr(self.model_tester, "batch_size"):
                sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32)
            else:
                sample_weight = None

1579
1580
1581
1582
1583
1584
1585
1586
1587
            model(model.dummy_inputs)  # Build the model so we can get some constant weights
            model_weights = model.get_weights()

            # Run eagerly to save some expensive compilation times
            model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
            # Make sure the model fits without crashing regardless of where we pass the labels
            history1 = model.fit(
                prepared_for_class,
                validation_data=prepared_for_class,
1588
                sample_weight=sample_weight,
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss1 = history1.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss1))
            accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}

            possible_label_cols = {
                "labels",
                "label",
                "label_ids",
                "start_positions",
                "start_position",
                "end_positions",
                "end_position",
                "next_sentence_label",
            }
            label_names = possible_label_cols.intersection(set(prepared_for_class))
            if len(label_names) == 0:
                # The next tests only make sense for models with separate inputs and labels, and do not make
                # sense for models that don't clearly distinguish between the two (e.g. CLIP)
                return
            labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
            inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
            self.assertGreater(len(inputs_minus_labels), 0)

            # We reinitialize the model here even though our learning rate was zero
            # because BatchNorm updates weights by means other than gradient descent.
            model.set_weights(model_weights)

            history2 = model.fit(
                inputs_minus_labels,
                labels,
                validation_data=(inputs_minus_labels, labels),
1624
                sample_weight=sample_weight,
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss2 = history2.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss2))
            accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
            self.check_keras_fit_results(val_loss1, val_loss2)
            self.assertEqual(history1.history.keys(), history2.history.keys())
            for key in history1.history.keys():
                if not key.startswith("val_"):
                    self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
            if metrics:
                self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")

            # Make sure fit works with tf.data.Dataset and results are consistent
            dataset = tf.data.Dataset.from_tensor_slices(prepared_for_class)
1642
1643
1644
1645
1646
1647

            if sample_weight is not None:
                # Add in the sample weight
                weighted_dataset = dataset.map(lambda x: (x, None, tf.convert_to_tensor(0.5, dtype=tf.float32)))
            else:
                weighted_dataset = dataset
1648
            # Pass in all samples as a batch to match other `fit` calls
1649
            weighted_dataset = weighted_dataset.batch(len(dataset))
1650
1651
1652
1653
1654
            dataset = dataset.batch(len(dataset))

            # Reinitialize to fix batchnorm again
            model.set_weights(model_weights)

1655
            # To match the other calls, don't pass sample weights in the validation data
1656
            history3 = model.fit(
1657
                weighted_dataset,
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
                validation_data=dataset,
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss3 = history3.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss3))
            accuracy3 = {key: val[0] for key, val in history3.history.items() if key.endswith("accuracy")}
            self.check_keras_fit_results(val_loss1, val_loss3)
            self.assertEqual(history1.history.keys(), history3.history.keys())
            if metrics:
                self.assertTrue(len(accuracy1) == len(accuracy3) > 0, "Missing metrics!")
1670

Matt's avatar
Matt committed
1671
    def test_int_support(self):
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
                [tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)]
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error
Matt's avatar
Matt committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
            int32_prepared_for_class = {
                key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model(**int32_prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

            # After testing that the model accepts all int inputs, confirm that its dummies are int32
            for key, tensor in model.dummy_inputs.items():
                self.assertTrue(isinstance(tensor, tf.Tensor), "Dummy inputs should be tf.Tensor!")
                if tensor.dtype.is_integer:
                    self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!")

            # Also confirm that the serving sig uses int32
            if hasattr(model, "serving"):
                serving_sig = model.serving.input_signature
                for key, tensor_spec in serving_sig[0].items():
                    if tensor_spec.dtype.is_integer:
                        self.assertTrue(
                            tensor_spec.dtype == tf.int32, "Serving signatures should use tf.int32 for ints!"
                        )
1710

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
1729
            if set(head_masking.keys()) < {*signature.parameters.keys()}:
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1745
    def test_load_with_mismatched_shapes(self):
1746
1747
        if not self.test_mismatched_shapes:
            return
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1764
1765
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1791
1792
1793
1794
1795
1796
1797
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1798
1799
1800
1801
1802
    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
Matt's avatar
Matt committed
1803
1804
            if "labels" in tf_inputs_dict:
                return  # This is some kinda funky decoder model that needs labels in its forward pass
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
Matt's avatar
Matt committed
1818
            elif isinstance(test_batch, dict):
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
                    model(test_batch, training=False)

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)

1850
    def _test_xla_generate(self, **generate_kwargs):
1851
        def _generate_and_check_results(model, inputs_dict):
1852
1853
1854
            if "input_ids" in inputs_dict:
                inputs = inputs_dict["input_ids"]
                # make sure there are no pad tokens in prompt, which may trigger unwanted behavior
1855
                if model.generation_config.pad_token_id is not None:
1856
                    if config.pad_token_id == 0:
1857
                        new_pad_token = model.generation_config.pad_token_id + 1
1858
                    else:
1859
                        new_pad_token = model.generation_config.pad_token_id - 1
1860
1861
                else:
                    new_pad_token = None
1862
                inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token)
1863
1864
1865
1866
1867
            elif "input_features" in inputs_dict:
                inputs = inputs_dict["input_features"]
            else:
                raise ValueError("No valid generate input found in inputs_dict")

1868
            generated = model.generate(inputs, **generate_kwargs).numpy()
1869
            generate_xla = tf.function(model.generate, jit_compile=True)
1870
            generated_xla = generate_xla(inputs, **generate_kwargs).numpy()
1871
1872
1873
1874
1875
1876
            self.assertListEqual(generated.tolist(), generated_xla.tolist())

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.eos_token_id = None  # Generate until max length
            config.do_sample = False
1877

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
            # fix config for models with additional sequence-length limiting settings
            for var_name in ["max_position_embeddings", "max_target_positions"]:
                attr = getattr(config, var_name, None)
                if attr is not None and attr < generate_kwargs["max_new_tokens"]:
                    try:
                        setattr(config, var_name, generate_kwargs["max_new_tokens"])
                    except NotImplementedError:
                        # xlnet will raise an exception when trying to set
                        # max_position_embeddings.
                        pass

1889
1890
1891
            model = model_class(config)

            if model.supports_xla_generation:
1892
                _generate_and_check_results(model, inputs_dict)
1893
1894
            else:
                with self.assertRaises(ValueError):
1895
                    _generate_and_check_results(model, inputs_dict)
1896
1897
1898
1899
1900
1901
1902
1903

    def test_xla_generate_fast(self):
        """
        Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their
        non XLA counterparts.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1904
        self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3)
1905

1906
    @slow
1907
1908
    def test_xla_generate_contrastive(self):
        """
1909
1910
1911
        Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly
        manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is
        also supported by XLA.
1912
1913
1914

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1915
        self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4)
1916

1917
1918
1919
1920
1921
1922
1923
1924
1925
    @slow
    def test_xla_generate_slow(self):
        """
        Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using
        beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the
        model may need further analysis if it is to be used for XLA generation.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1926
        self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128)
1927

1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1946
    def _check_generated_ids(self, output_ids):
1947
1948
1949
1950
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1963

thomwolf's avatar
thomwolf committed
1964
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1977
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1978
1979

    return output
1980
1981


Yih-Dar's avatar
Yih-Dar committed
1982
1983
1984
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
1985
    attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
Yih-Dar's avatar
Yih-Dar committed
1986
1987
1988
    return attn_mask


1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


2005
2006
@require_tf
class UtilsFunctionsTest(unittest.TestCase):
2007
2008
2009
2010
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
2011
        response_mock.headers = {}
2012
        response_mock.raise_for_status.side_effect = HTTPError
2013
        response_mock.json.return_value = {}
2014
2015
2016
2017
2018

        # Download this model to make sure it's in the cache.
        _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
2019
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
2020
2021
2022
2023
            _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", f)

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = TFBertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = TFBertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", config=config
        )

2042
2043
2044
2045
2046
2047
    # tests whether the unpack_inputs function behaves as expected
    def test_unpack_inputs(self):
        class DummyModel:
            def __init__(self):
                config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
                self.config = PretrainedConfig(**config_kwargs)
2048
                self.main_input_name = "input_ids"
2049
2050
2051

            @unpack_inputs
            def call(
2052
2053
2054
2055
2056
2057
                self,
                input_ids=None,
                past_key_values=None,
                output_attentions=None,
                output_hidden_states=None,
                return_dict=None,
2058
            ):
2059
                return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict
2060

2061
2062
2063
2064
            @unpack_inputs
            def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None):
                return pixel_values, output_attentions, output_hidden_states, return_dict

2065
        dummy_model = DummyModel()
Matt's avatar
Matt committed
2066
2067
2068
        input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32)
        past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32)
        pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32)
2069
2070

        # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
2071
        output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values)
2072
        tf.debugging.assert_equal(output[0], input_ids)
2073
        tf.debugging.assert_equal(output[1], past_key_values)
2074
2075
2076
2077
2078
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 2: Same as above, but with positional arguments.
2079
        output = dummy_model.call(input_ids, past_key_values)
2080
        tf.debugging.assert_equal(output[0], input_ids)
2081
        tf.debugging.assert_equal(output[1], past_key_values)
2082
2083
2084
2085
2086
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 3: We can also pack everything in the first input.
2087
        output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values})
2088
        tf.debugging.assert_equal(output[0], input_ids)
2089
        tf.debugging.assert_equal(output[1], past_key_values)
2090
2091
2092
2093
2094
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 4: Explicit boolean arguments should override the config.
2095
2096
2097
        output = dummy_model.call(
            input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True
        )
2098
        tf.debugging.assert_equal(output[0], input_ids)
2099
        tf.debugging.assert_equal(output[1], past_key_values)
2100
2101
2102
2103
2104
2105
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertTrue(output[4])

        # test case 5: Unexpected arguments should raise an exception.
        with self.assertRaises(ValueError):
2106
            output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar")
2107

2108
        # test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the
2109
2110
2111
2112
2113
2114
2115
        # decorated function as its main input.
        output = dummy_model.foo(pixel_values=pixel_values)
        tf.debugging.assert_equal(output[0], pixel_values)
        self.assertFalse(output[1])
        self.assertFalse(output[2])
        self.assertFalse(output[3])

Joao Gante's avatar
Joao Gante committed
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
    # Tests whether the stable softmax is stable on CPU, with and without XLA
    def test_xla_stable_softmax(self):
        large_penalty = -1e9
        n_tokens = 10
        batch_size = 8

        def masked_softmax(x, boolean_mask):
            numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
            masked_x = x + numerical_mask
            return stable_softmax(masked_x)

        xla_masked_softmax = tf.function(masked_softmax, jit_compile=True)
        xla_stable_softmax = tf.function(stable_softmax, jit_compile=True)
        x = tf.random.normal((batch_size, n_tokens))

        # Same outcome regardless of the boolean mask here
        masked_tokens = random.randint(0, n_tokens)
        boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32)

        # We can randomly mask a random numerical input OUTSIDE XLA
        numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
        masked_x = x + numerical_mask
        xla_out = xla_stable_softmax(masked_x)
        out = stable_softmax(masked_x)
        assert tf.experimental.numpy.allclose(xla_out, out)

        # The stable softmax has the same output as the original softmax
        unstable_out = tf.nn.softmax(masked_x)
        assert tf.experimental.numpy.allclose(unstable_out, out)

        # We can randomly mask a random numerical input INSIDE XLA
        xla_out = xla_masked_softmax(x, boolean_mask)
        out = masked_softmax(x, boolean_mask)
        assert tf.experimental.numpy.allclose(xla_out, out)

Arthur's avatar
Arthur committed
2151
2152
2153
2154
2155
2156
2157
    def test_checkpoint_sharding_from_hub(self):
        model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.weights, ref_model.weights):
            assert np.allclose(p1.numpy(), p2.numpy())

2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
    def test_sharded_checkpoint_with_prefix(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b")
        sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b")
        for p1, p2 in zip(model.weights, sharded_model.weights):
            self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
            self.assertTrue(p1.name.startswith("a/b/"))
            self.assertTrue(p2.name.startswith("a/b/"))

    def test_sharded_checkpoint_transfer(self):
        # If this doesn't throw an error then the test passes
        TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded")

2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
    @is_pt_tf_cross_test
    def test_checkpoint_sharding_local_from_pt(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded")
            model = TFBertModel.from_pretrained(tmp_dir, from_pt=True)
            # the model above is the same as the model below, just a sharded pytorch version.
            ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            for p1, p2 in zip(model.weights, ref_model.weights):
                assert np.allclose(p1.numpy(), p2.numpy())

2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    @is_pt_tf_cross_test
    def test_checkpoint_loading_with_prefix_from_pt(self):
        model = TFBertModel.from_pretrained(
            "hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b"
        )
        ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True)
        for p1, p2 in zip(model.weights, ref_model.weights):
            self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
            self.assertTrue(p1.name.startswith("a/b/"))

2190
2191
2192
2193
2194
2195
2196
2197
    @is_pt_tf_cross_test
    def test_checkpoint_sharding_hub_from_pt(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True)
        # the model above is the same as the model below, just a sharded pytorch version.
        ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.weights, ref_model.weights):
            assert np.allclose(p1.numpy(), p2.numpy())

Arthur's avatar
Arthur committed
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = tf.keras.Sequential(
            [
                tf.keras.layers.Dense(200, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(200, use_bias=False),  # size 160,000
                tf.keras.layers.Dense(100, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(50, use_bias=False),  # size 20,000
            ]
        )
        inputs = tf.zeros((1, 100), dtype=tf.float32)
        model(inputs)
        weights = model.weights
        weights_dict = {w.name: w for w in weights}
        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = tf_shard_checkpoint(weights)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_1/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_2/kernel:0": "tf_model-00002-of-00002.h5",
                        "dense_3/kernel:0": "tf_model-00002-of-00002.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]]
            shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2})

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00003.h5",
                        "dense_1/kernel:0": "tf_model-00002-of-00003.h5",
                        "dense_2/kernel:0": "tf_model-00003-of-00003.h5",
                        "dense_3/kernel:0": "tf_model-00003-of-00003.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"]]
            shard2 = [weights_dict["dense_1/kernel:0"]]
            shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(
                shards,
                {
                    "tf_model-00001-of-00003.h5": shard1,
                    "tf_model-00002-of-00003.h5": shard2,
                    "tf_model-00003-of-00003.h5": shard3,
                },
            )

2265
    @slow
Sylvain Gugger's avatar
Sylvain Gugger committed
2266
    def test_special_layer_name_sharding(self):
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
        retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
        model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever)

        with tempfile.TemporaryDirectory() as tmp_dir:
            for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)
                ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever)
                for p1, p2 in zip(model.weights, ref_model.weights):
                    assert np.allclose(p1.numpy(), p2.numpy())

Arthur's avatar
Arthur committed
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
    def test_checkpoint_sharding_local(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".h5"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        with h5py.File(shard_file, "r") as state_file:
                            self.assertEqual(len(state_file), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
2314
                shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")}
Arthur's avatar
Arthur committed
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = TFBertModel.from_pretrained(tmp_dir)

                model(model.dummy_inputs)
                new_model(model.dummy_inputs)

                for p1, p2 in zip(model.weights, new_model.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

2326
    @slow
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
    def test_save_pretrained_signatures(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Short custom TF signature function.
        # `input_signature` is specific to BERT.
        @tf.function(
            input_signature=[
                [
                    tf.TensorSpec([None, None], tf.int32, name="input_ids"),
                    tf.TensorSpec([None, None], tf.int32, name="token_type_ids"),
                    tf.TensorSpec([None, None], tf.int32, name="attention_mask"),
                ]
            ]
        )
        def serving_fn(input):
            return model(input)

        # Using default signature (default behavior) overrides 'serving_default'
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, saved_model=True, signatures=None)
            model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
            self.assertTrue("serving_default" in list(model_loaded.signatures.keys()))

        # Providing custom signature function
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn})
            model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
            self.assertTrue("custom_signature" in list(model_loaded.signatures.keys()))

        # Providing multiple custom signature function
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                tmp_dir,
                saved_model=True,
                signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn},
            )
            model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
            self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys()))
            self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys()))

Sylvain Gugger's avatar
Sylvain Gugger committed
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No tf_model.h5 file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))

            new_model = TFBertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.weights, new_model.weights):
                self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_tf_cross_test
    def test_safetensors_save_and_load_pt_to_tf(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            pt_model.save_pretrained(tmp_dir, safe_serialization=True)
            # Check we have a model.safetensors file
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = TFBertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.weights, new_model.weights):
                self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Can load from the TF-formatted checkpoint
        safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.weights, tf_model.weights):
            self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

        # Can load from the PyTorch-formatted checkpoint
        safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.weights, tf_model.weights):
            self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

Sylvain Gugger's avatar
Sylvain Gugger committed
2415
2416
2417
2418
2419
2420

@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2421
2422
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2423
2424
2425
2426

    @classmethod
    def tearDownClass(cls):
        try:
2427
            delete_repo(token=cls._token, repo_id="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
2428
2429
2430
        except HTTPError:
            pass

2431
2432
2433
2434
2435
        try:
            delete_repo(token=cls._token, repo_id="test-model-tf-callback")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2436
        try:
2437
            delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

2449
2450
2451
2452
2453
2454
        logging.set_verbosity_info()
        logger = logging.get_logger("transformers.utils.hub")
        with CaptureLogger(logger) as cl:
            model.push_to_hub("test-model-tf", use_auth_token=self._token)
        logging.set_verbosity_warning()
        # Check the model card was created and uploaded.
2455
        self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out)
2456
2457
2458
2459

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
2460
            if not tf.math.reduce_all(p1 == p2):
2461
                models_equal = False
2462
                break
2463
2464
2465
2466
2467
2468
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model-tf")

        # Push to hub via save_pretrained
Matt's avatar
Matt committed
2469
        with tempfile.TemporaryDirectory() as tmp_dir:
2470
2471
2472
2473
2474
            model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
2475
2476
2477
2478
2479
            if not tf.math.reduce_all(p1 == p2):
                models_equal = False
                break
        self.assertTrue(models_equal)

2480
    @is_pt_tf_cross_test
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
    def test_push_to_hub_callback(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertForMaskedLM(config)
        model.compile()

        with tempfile.TemporaryDirectory() as tmp_dir:
            push_to_hub_callback = PushToHubCallback(
                output_dir=tmp_dir,
                hub_model_id="test-model-tf-callback",
                hub_token=self._token,
            )
            model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback])

        new_model = TFBertForMaskedLM.from_pretrained(f"{USER}/test-model-tf-callback")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if not tf.math.reduce_all(p1 == p2):
2500
                models_equal = False
2501
                break
2502
        self.assertTrue(models_equal)
Matt's avatar
Matt committed
2503

2504
2505
2506
2507
2508
2509
        tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters)
        tf_push_to_hub_params.pop("base_model_card_args")
        pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters)
        pt_push_to_hub_params.pop("deprecated_kwargs")
        self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params)

Sylvain Gugger's avatar
Sylvain Gugger committed
2510
2511
2512
2513
2514
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
2515
2516
2517
2518
2519
2520
2521
2522
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

        model.push_to_hub("valid_org/test-model-tf-org", use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
2523
            if not tf.math.reduce_all(p1 == p2):
2524
                models_equal = False
2525
                break
2526
2527
2528
2529
2530
2531
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
2532
2533
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2534
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-tf-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
2535
2536
            )

2537
2538
2539
        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
2540
            if not tf.math.reduce_all(p1 == p2):
2541
                models_equal = False
2542
                break
2543
        self.assertTrue(models_equal)