test_modeling_tf_common.py 24.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import os
thomwolf's avatar
thomwolf committed
19
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import tempfile
21
import unittest
22
from importlib import import_module
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_tf_available, is_torch_available
25

Julien Chaumond's avatar
Julien Chaumond committed
26
from .utils import _tf_gpu_memory_limit, require_tf
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_tf_available():
thomwolf's avatar
thomwolf committed
30
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32

33
    from transformers import tf_top_k_top_p_filtering, TFAdaptiveEmbedding
34

Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
38
39
40
41
42
43
44
45
46
47
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
48

49

thomwolf's avatar
thomwolf committed
50
51
52
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
53
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
54
55
56
57
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


58
59
@require_tf
class TFModelTesterMixin:
60

61
62
    model_tester = None
    all_model_classes = ()
63
    all_generative_model_classes = ()
64
65
66
67
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    is_encoder_decoder = False
68

69
70
71
    def test_initialization(self):
        pass
        # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
72

73
74
75
76
77
78
79
        # configs_no_init = _config_zero_init(config)
        # for model_class in self.all_model_classes:
        #     model = model_class(config=configs_no_init)
        #     for name, param in model.named_parameters():
        #         if param.requires_grad:
        #             self.assertIn(param.data.mean().item(), [0.0, 1.0],
        #             msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
80

81
82
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
83

84
85
86
        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(inputs_dict)
87

88
            with tempfile.TemporaryDirectory() as tmpdirname:
89
90
91
92
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
                after_outputs = model(inputs_dict)

93
                self.assert_outputs_same(after_outputs, outputs)
94

95
96
97
98
99
100
101
102
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
103
            if module_member_name.endswith("MainLayer")
104
            for module_member in (getattr(module, module_member_name),)
105
106
107
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        )
        for main_layer_class in tf_main_layer_classes:
            main_layer = main_layer_class(config)
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                model = tf.keras.models.load_model(
                    filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                )
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
        out_1 = after_outputs[0].numpy()
        out_2 = outputs[0].numpy()
131
        self.assertEqual(out_1.shape, out_2.shape)
132
133
134
135
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
136

137
138
139
    def test_pt_tf_model_equivalence(self):
        if not is_torch_available():
            return
thomwolf's avatar
thomwolf committed
140

141
142
        import torch
        import transformers
thomwolf's avatar
thomwolf committed
143

144
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
145

146
147
148
        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beggining
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
149

150
151
152
            config.output_hidden_states = True
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
153

154
155
156
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
157

158
159
160
161
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
                (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
162
            )
163
164
165
166
167
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(inputs_dict, training=False)
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
168

169
170
171
172
173
174
175
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
176

177
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
178
179
180
181
182
183
184
            # Debug info (remove when fixed)
            if max_diff >= 2e-2:
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
185
186
187
            self.assertLessEqual(max_diff, 2e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
188
            with tempfile.TemporaryDirectory() as tmpdirname:
189
190
191
192
193
194
195
196
197
198
199
200
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
                (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
201
            )
202
203
204
205
206
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(inputs_dict)
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
207
208
209
210
211
212
213
214
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 2e-2)

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        if self.is_encoder_decoder:
            input_ids = {
                "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
                "encoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="encoder_input_ids", dtype="int32"),
            }
        else:
            input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
237
            with tempfile.TemporaryDirectory() as tmpdirname:
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                outputs = model(inputs_dict)  # build the model
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

            # Add a dense layer on top to test intetgration with other keras modules
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs_dict = model(inputs_dict)

            inputs_keywords = copy.deepcopy(inputs_dict)
260
            input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "decoder_input_ids", None,)
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            outputs_keywords = model(input_ids, **inputs_keywords)

            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        decoder_seq_length = (
            self.model_tester.decoder_seq_length
            if hasattr(self.model_tester, "decoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        decoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(inputs_dict)
            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
300
            )
301
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
302

303
304
305
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
306
307
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
308
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
309
                self.assertListEqual(
310
311
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
312
                )
thomwolf's avatar
thomwolf committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            # Check attention is always last and order is fine
            config.output_attentions = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            attentions = [t.numpy() for t in outputs[-1]]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
329

330
331
332
333
334
335
336
337
338
339
340
341
342
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
            outputs = model(inputs_dict)
            hidden_states = [t.numpy() for t in outputs[-1]]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
343
                list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
344
            )
345

346
347
348
349
350
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
351
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
352
353
354
355
356
357
358
359
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
360
361
362
363
            first, second = (
                model(inputs_dict, training=False)[0],
                model(inputs_dict, training=False)[0],
            )
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
378
            try:
379
                x = wte([input_ids], mode="embedding")
380
            except Exception:
thomwolf's avatar
thomwolf committed
381
                try:
382
                    x = wte([input_ids, None, None, None], mode="embedding")
383
                except Exception:
384
                    if hasattr(self.model_tester, "embedding_size"):
385
                        x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32,)
386
                    else:
387
                        x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32,)
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
            encoder_input_ids = inputs_dict["encoder_input_ids"]
            decoder_input_ids = inputs_dict["decoder_input_ids"]
            del inputs_dict["encoder_input_ids"]
            del inputs_dict["decoder_input_ids"]

        for model_class in self.all_model_classes:
            model = model_class(config)

            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
405
            if not self.is_encoder_decoder:
406
                inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
407
            else:
408
409
410
                inputs_dict["encoder_inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)

411
            model(inputs_dict)
412

413
414
415
416
417
418
419
420
421
422
423
424
    def test_lm_head_model_random_generate(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get(
            "input_ids", None
        )  # TODO (PVP): ugly workaround to make code work for t5 for the moment - has to changed when t5 is fixed.

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                with self.assertRaises(AssertionError):
425
                    model.generate(do_sample=True, max_length=5)
426
                # batch_size = 1
427
                self._check_generated_tokens(model.generate(input_ids, do_sample=True))
428
                # batch_size = 1, num_beams > 1
429
                self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_beams=3))
430
431
            else:
                # batch_size = 1
432
                self._check_generated_tokens(model.generate(do_sample=True, max_length=5))
433
                # batch_size = 1, num_beams > 1
434
                self._check_generated_tokens(model.generate(do_sample=True, max_length=5, num_beams=3))
435
436
437
438
439
440
441
442
443

            with self.assertRaises(AssertionError):
                # generating multiple sequences when greedy no beam generation
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)
444
445

            # batch_size > 1, sample
446
            self._check_generated_tokens(model.generate(input_ids, do_sample=True, num_return_sequences=3))
447
            # batch_size > 1, greedy
448
449
450
            self._check_generated_tokens(model.generate(input_ids, do_sample=False))

            # batch_size > 1, num_beams > 1, sample
451
452
453
            self._check_generated_tokens(
                model.generate(input_ids, do_sample=True, num_beams=3, num_return_sequences=3,)
            )
454
455
456
457
            # batch_size > 1, num_beams > 1, greedy
            self._check_generated_tokens(
                model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3)
            )
458
459
460
461
462
463

    def _check_generated_tokens(self, output_ids):
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

thomwolf's avatar
thomwolf committed
464

thomwolf's avatar
thomwolf committed
465
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
466
467
468
469
470
471
472
473
474
475
476
477
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

478
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
479
480

    return output
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)