test_modeling_tf_common.py 63.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
from importlib import import_module
25
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
26

27
from huggingface_hub import delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from requests.exceptions import HTTPError
29
from transformers import is_tf_available
30
from transformers.models.auto import get_values
31
from transformers.testing_utils import tooslow  # noqa: F401
Lysandre Debut's avatar
Lysandre Debut committed
32
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
    PASS,
    USER,
35
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
36
37
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    is_staging_test,
39
    require_keras2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
40
41
42
    require_tf,
    slow,
)
43
from transformers.utils import logging
44

Aymeric Augustin's avatar
Aymeric Augustin committed
45

46
if is_tf_available():
thomwolf's avatar
thomwolf committed
47
    import numpy as np
48
    import tensorflow as tf
49

50
    from transformers import (
51
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
52
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
53
        TF_MODEL_FOR_MASKED_LM_MAPPING,
54
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
55
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
56
        TF_MODEL_FOR_PRETRAINING_MAPPING,
57
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
58
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
59
60
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
61
        BertConfig,
62
        TFAutoModel,
63
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
64
        TFBertModel,
65
66
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
67
    )
68
69
70
71
72
73
74
75
76
77
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
78

Julien Chaumond's avatar
Julien Chaumond committed
79
80
81
82
83
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
84
85
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
86
                )
Julien Plu's avatar
Julien Plu committed
87
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
92

93

thomwolf's avatar
thomwolf committed
94
95
96
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
97
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
98
99
100
101
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


102
103
@require_tf
class TFModelTesterMixin:
104

105
106
    model_tester = None
    all_model_classes = ()
107
    all_generative_model_classes = ()
108
    test_mismatched_shapes = True
109
    test_resize_embeddings = True
110
    test_head_masking = True
111
    is_encoder_decoder = False
112

Lysandre Debut's avatar
Lysandre Debut committed
113
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
114
115
        inputs_dict = copy.deepcopy(inputs_dict)

116
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
117
            inputs_dict = {
118
119
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
120
121
122
                else v
                for k, v in inputs_dict.items()
            }
123
124

        if return_labels:
125
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
126
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
127
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
128
129
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
130
131
132
133
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
134
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
135
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
136
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
137
            elif model_class in [
138
139
140
141
142
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
143
144
145
146
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
147
148
        return inputs_dict

149
150
    def test_initialization(self):
        pass
151

152
153
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
154

155
156
        for model_class in self.all_model_classes:
            model = model_class(config)
157
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
158

159
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
160
                model.save_pretrained(tmpdirname, saved_model=False)
161
                model = model_class.from_pretrained(tmpdirname)
162
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
163

164
                self.assert_outputs_same(after_outputs, outputs)
165

166
167
168
169
170
171
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
172
173
174
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
175
            new_model = model_class.from_config(model.get_config())
176
177
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
178
179
180
181
182
183
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

184
185
186
187
188
189
190
191
192
193
194
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
195
                    "input_ids",
196
197
198
199
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
200
                expected_arg_names.extend(
201
202
203
204
205
206
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                # Necessary to handle BART with newly added cross_attn_head_mask
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
207
208
209
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
210
211

            else:
Julien Plu's avatar
Julien Plu committed
212
                expected_arg_names = ["input_ids"]
213
214
                self.assertListEqual(arg_names[:1], expected_arg_names)

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

257
    @require_keras2onnx
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import keras2onnx
        import onnxruntime

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

            onnx_model = keras2onnx.convert_keras(model, model.name, target_opset=self.onnx_min_opset)

            onnxruntime.InferenceSession(onnx_model.SerializeToString())

276
277
278
279
280
281
282
283
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
284
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
285
286
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
287
            for module_member in (getattr(module, module_member_name),)
288
289
290
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
291
292
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
293
294
295
296
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
297
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
298
299
300
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
301

302
303
304
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
305

306
307
308
309
310
311
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
312
313
314
315
316
317
318
319
320
321
322
323
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
324
325
326
327
328
329
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
330
331
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
332
        elif isinstance(after_outputs, dict):
333
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
334
335
        else:
            out_1 = after_outputs[0].numpy()
336
        out_2 = outputs[0].numpy()
337
        self.assertEqual(out_1.shape, out_2.shape)
338
339
340
341
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
342

343
    @is_pt_tf_cross_test
344
345
    def test_pt_tf_model_equivalence(self):
        import torch
346

347
        import transformers
thomwolf's avatar
thomwolf committed
348

349
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
350

351
        for model_class in self.all_model_classes:
352
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
353
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
354

355
            config.output_hidden_states = True
356

357
358
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
359

360
            # Check we can load pt model in tf and vice-versa with model => model functions
361

362
363
364
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
365
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
366

367
368
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
369
370
371
372
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
Will Rice's avatar
Will Rice committed
373
374
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Yih-Dar's avatar
Yih-Dar committed
375
376
                elif name == "pixel_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
377
378
379
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

380
381
382
383
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

384
385
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
386
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
Will Rice's avatar
Will Rice committed
387

388
389
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
390

391
392
393
394
395
396
397
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
398

399
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
400
            self.assertLessEqual(max_diff, 4e-2)
401
402

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
403
            with tempfile.TemporaryDirectory() as tmpdirname:
404
405
406
407
408
409
410
411
412
413
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
414
415
416
417
418
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
Will Rice's avatar
Will Rice committed
419
420
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Yih-Dar's avatar
Yih-Dar committed
421
422
                elif name == "pixel_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
423
424
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
425
426
427
428
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

429
430
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
431
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
432
433
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
434
435
436
437
438
439
440
441
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

442
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
443
            self.assertLessEqual(max_diff, 4e-2)
444
445
446

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
447
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
448
449
450
451
452
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
453
            if self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
454
                inputs = {
455
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
456
457
458
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
459
                    ),
Julien Plu's avatar
Julien Plu committed
460
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
461
                }
Yih-Dar's avatar
Yih-Dar committed
462
            # TODO: A better way to handle vision models
Yih-Dar's avatar
Yih-Dar committed
463
            elif model_class.__name__ in ["TFViTModel", "TFViTForImageClassification", "TFCLIPVisionModel"]:
Yih-Dar's avatar
Yih-Dar committed
464
465
466
467
468
469
470
471
472
473
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
488
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
489
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
490
            else:
Yih-Dar's avatar
Yih-Dar committed
491
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
492

493
494
            # Prepare our model
            model = model_class(config)
495
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
496
            # Let's load it from the disk to be sure we can use pretrained weights
497
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
498
                model.save_pretrained(tmpdirname, saved_model=False)
499
500
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
501
            outputs_dict = model(inputs)
502
503
            hidden_states = outputs_dict[0]

504
            # Add a dense layer on top to test integration with other keras modules
505
506
507
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
508
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
509
510
511
512
513
514
515
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
516
517
518
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
519

520
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
521
            input_ids = inputs_keywords.pop("input_ids", None)
Yih-Dar's avatar
Yih-Dar committed
522
523
            if input_ids is None:
                input_ids = inputs_keywords.pop("pixel_values", None)
524
525
526
527
528
529
530
531
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
532
        config.return_dict = True
533
534
535
536
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
537

Julien Plu's avatar
Julien Plu committed
538
539
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
540
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
541
542
543
544
545
546
547
548
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
549
550
551
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
552
553
554
555
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
556
            )
Julien Plu's avatar
Julien Plu committed
557
558
559
560
561
562
563

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
564
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
565
566
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
567

568
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
569
570
571
572
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
573

574
575
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
576
            config.output_attentions = True
577
            model = model_class(config)
578
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
579
580
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
581
582
583

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
584
585
            config.output_hidden_states = True
            model = model_class(config)
586
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
587

588
589
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
590
            check_encoder_attentions_output(outputs)
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
634
635
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
660
661
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
662
663
664
            else:
                check_attentions_validity(outputs.attentions)

665
666
667
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
668
        def check_hidden_states_output(config, inputs_dict, model_class):
669
            model = model_class(config)
670
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
671
672
673
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
674

Julien Plu's avatar
Julien Plu committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
698

Joseph Liu's avatar
Joseph Liu committed
699
700
701
702
703
704
705
706
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

707
708
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
709
        list_lm_models = (
710
711
712
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
713
        )
714
715
716

        for model_class in self.all_model_classes:
            model = model_class(config)
717
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
718
719

            if model_class in list_lm_models:
720
                x = model.get_output_embeddings()
721
                assert isinstance(x, tf.keras.layers.Layer)
722
723
724
725
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
726
            else:
727
                x = model.get_output_embeddings()
728
                assert x is None
729
730
                name = model.get_bias()
                assert name is None
731
732
733
734
735
736

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
737
            first, second = (
738
739
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
740
            )
741
742
743
744
745
746
747
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

803
804
805
806
807
808
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

809
810
            inputs = copy.deepcopy(inputs_dict)

811
812
813
814
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
815
                encoder_input_ids = inputs["input_ids"]
816
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
817
                del inputs["input_ids"]
818
819
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
820
            if not self.is_encoder_decoder:
821
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
822
            else:
823
824
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
825

826
827
            inputs = self._prepare_for_class(inputs, model_class)

828
            model(inputs)
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

851
852
853
854
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
855
856

        def _get_word_embedding_weight(model, embedding_layer):
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
876

877
878
879
880
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
881
882
883
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
884
                # reshape the embeddings
885
886
887
888
889
890
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
891
                assert_size = size if size is not None else config.vocab_size
892
893
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

894
895
                # check that weights remain the same after resizing
                models_equal = True
896
897
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
898
899
900
                        models_equal = False
                self.assertTrue(models_equal)

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

921
    def test_lm_head_model_random_no_beam_search_generate(self):
922
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
923
        input_ids = inputs_dict.get("input_ids", None)
924

925
        # iterate over all generative models
926
927
928
929
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
930
                # if bos token id is not defined mobel needs input_ids
931
                with self.assertRaises(AssertionError):
932
                    model.generate(do_sample=True, max_length=5)
933
                # num_return_sequences = 1
934
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
935
            else:
936
                # num_return_sequences = 1
937
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
938
939

            with self.assertRaises(AssertionError):
940
                # generating multiple sequences when no beam search generation
941
942
943
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

944
945
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
946
947

            # check bad words tokens language generation
948
949
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
950
            output_tokens = model.generate(
951
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
952
            )
953
            # only count generated tokens
954
955
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
956

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

988
989
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
990
        input_ids = inputs_dict.get("input_ids", None)
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1007
1008
1009
1010
1011
1012
1013
1014
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1015
1016
1017
1018
1019
1020
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1021
            output_tokens = model.generate(
1022
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1023
            )
1024
            # only count generated tokens
1025
1026
1027
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1061
1062
1063
1064
1065
1066
1067
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1068
1069
1070
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1071
1072
                loss_size = tf.size(added_label)

1073
                if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
1074
1075
1076
1077
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1078
1079
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Yih-Dar's avatar
Yih-Dar committed
1080
1081
                input_name = "input_ids" if "input_ids" in prepared_for_class else "pixel_values"
                input_ids = prepared_for_class.pop(input_name)
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1096
1097
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1098
1099

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1100
                tuple_index_mapping = {0: input_name}
1101
                for label_key in label_keys:
1102
                    label_key_index = signature_names.index(label_key)
1103
1104
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1105
1106
1107
1108
1109
1110
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1111
1112

                for index, value in sorted_tuple_index_mapping:
1113
1114
                    list_input[index] = prepared_for_class[value]

1115
1116
1117
                tuple_input = tuple(list_input)

                # Send to model
1118
1119
                loss = model(tuple_input[:-1])[0]

1120
1121
                self.assertEqual(loss.shape, [loss_size])

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1156
    def test_load_with_mismatched_shapes(self):
1157
1158
        if not self.test_mismatched_shapes:
            return
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1175
1176
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1202
1203
1204
1205
1206
1207
1208
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1227
    def _check_generated_ids(self, output_ids):
1228
1229
1230
1231
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1244

thomwolf's avatar
thomwolf committed
1245
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1258
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1259
1260

    return output
1261
1262


Yih-Dar's avatar
Yih-Dar committed
1263
1264
1265
1266
1267
1268
1269
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
    attn_mask = tf.concat([tf.constant(value=1, shape=(shape[0], 1), dtype=dtype), attn_mask[:, 1:]], axis=1)
    return attn_mask


1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1362
1363
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1375
1376
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1377
1378
1379
1380
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1381
1382
1383
1384
1385
1386
1387


@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1388
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1389
1390
1391
1392

    @classmethod
    def tearDownClass(cls):
        try:
1393
            delete_repo(token=cls._token, name="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1394
1395
1396
1397
        except HTTPError:
            pass

        try:
1398
            delete_repo(token=cls._token, name="test-model-tf-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)
        with tempfile.TemporaryDirectory() as tmp_dir:
1410
            model.save_pretrained(os.path.join(tmp_dir, "test-model-tf"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1411

1412
            new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1413
1414
1415
1416
1417
1418
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)

Matt's avatar
Matt committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
    def test_push_to_hub_with_model_card(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.push_to_hub(os.path.join(tmp_dir, "test-model-tf"))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "test-model-card-tf", "README.md")))

Sylvain Gugger's avatar
Sylvain Gugger committed
1428
1429
1430
1431
1432
1433
1434
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1435
                os.path.join(tmp_dir, "test-model-tf-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
1436
1437
1438
1439
1440
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

1441
            new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1442
1443
1444
1445
1446
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)