test_modeling_tf_common.py 75.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
from importlib import import_module
25
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
26

27
from huggingface_hub import delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from requests.exceptions import HTTPError
29
from transformers import is_tf_available
30
from transformers.configuration_utils import PretrainedConfig
31
from transformers.models.auto import get_values
32
from transformers.testing_utils import tooslow  # noqa: F401
Lysandre Debut's avatar
Lysandre Debut committed
33
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
    PASS,
    USER,
36
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
37
38
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    is_staging_test,
Lysandre Debut's avatar
Lysandre Debut committed
40
    require_tf,
41
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
42
    slow,
43
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
44
)
45
from transformers.utils import logging
46

Aymeric Augustin's avatar
Aymeric Augustin committed
47

48
49
50
logger = logging.get_logger(__name__)


51
if is_tf_available():
thomwolf's avatar
thomwolf committed
52
    import numpy as np
53
    import tensorflow as tf
54

55
    from transformers import (
56
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
57
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
58
        TF_MODEL_FOR_MASKED_LM_MAPPING,
59
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
60
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
61
        TF_MODEL_FOR_PRETRAINING_MAPPING,
62
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
63
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
64
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
65
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
66
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
67
        BertConfig,
68
        TFAutoModel,
69
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
70
        TFBertModel,
71
72
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
73
    )
74
75
76
77
78
79
80
81
82
83
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
84
    from transformers.modeling_tf_utils import unpack_inputs
85

Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
91
92
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
93
                )
Julien Plu's avatar
Julien Plu committed
94
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
95
96
97
98
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
99

100

thomwolf's avatar
thomwolf committed
101
102
103
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
104
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
105
106
107
108
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


109
110
@require_tf
class TFModelTesterMixin:
111

112
113
    model_tester = None
    all_model_classes = ()
114
    all_generative_model_classes = ()
115
    test_mismatched_shapes = True
116
    test_resize_embeddings = True
117
    test_head_masking = True
118
    is_encoder_decoder = False
119
    has_attentions = True
120

Lysandre Debut's avatar
Lysandre Debut committed
121
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
122
123
        inputs_dict = copy.deepcopy(inputs_dict)

124
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
125
            inputs_dict = {
126
127
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
128
129
130
                else v
                for k, v in inputs_dict.items()
            }
131
132

        if return_labels:
133
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
134
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
135
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
136
137
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
138
139
140
141
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
142
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
143
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
144
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
145
            elif model_class in [
146
147
148
149
150
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
151
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
152
153
154
155
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
156
157
        return inputs_dict

158
159
    def test_initialization(self):
        pass
160

161
162
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
163

164
165
        for model_class in self.all_model_classes:
            model = model_class(config)
166
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
167

168
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
169
                model.save_pretrained(tmpdirname, saved_model=False)
170
                model = model_class.from_pretrained(tmpdirname)
171
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
172

173
                self.assert_outputs_same(after_outputs, outputs)
174

175
176
177
178
179
180
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
181
182
183
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
184
            new_model = model_class.from_config(model.get_config())
185
186
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
187
188
189
190
191
192
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

193
194
195
196
197
198
199
200
201
202
203
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
204
                    "input_ids",
205
206
207
208
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
209
                expected_arg_names.extend(
210
211
212
213
214
215
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                # Necessary to handle BART with newly added cross_attn_head_mask
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
216
217
218
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
219
220

            else:
Julien Plu's avatar
Julien Plu committed
221
                expected_arg_names = ["input_ids"]
222
223
                self.assertListEqual(arg_names[:1], expected_arg_names)

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

266
    @require_tf2onnx
267
268
269
270
271
272
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
273
        import tf2onnx
274
275
276
277
278
279
280

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

281
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
282

283
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
284

285
286
287
288
289
290
291
292
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
293
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
294
295
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
296
            for module_member in (getattr(module, module_member_name),)
297
298
299
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
300
301
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
302
303
304
305
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
306
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
307
308
309
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
310

311
312
313
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
314

315
316
317
318
319
320
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
321
322
323
324
325
326
327
328
329
330
331
332
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
333
334
335
336
337
338
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
339
340
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
341
        elif isinstance(after_outputs, dict):
342
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
343
344
        else:
            out_1 = after_outputs[0].numpy()
345
        out_2 = outputs[0].numpy()
346
        self.assertEqual(out_1.shape, out_2.shape)
347
348
349
350
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
351

352
    @is_pt_tf_cross_test
353
354
    def test_pt_tf_model_equivalence(self):
        import torch
355

356
        import transformers
thomwolf's avatar
thomwolf committed
357

358
        def prepare_pt_inputs_from_tf_inputs(tf_inputs_dict):
359

Julien Plu's avatar
Julien Plu committed
360
            pt_inputs_dict = {}
361
            for name, key in tf_inputs_dict.items():
Julien Plu's avatar
Julien Plu committed
362
363
                if type(key) == bool:
                    pt_inputs_dict[name] = key
Will Rice's avatar
Will Rice committed
364
365
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Yih-Dar's avatar
Yih-Dar committed
366
367
                elif name == "pixel_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Joao Gante's avatar
Joao Gante committed
368
369
                elif name == "input_features":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
370
371
372
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            return pt_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Some issue (`about past_key_values`) to solve (e.g. `TFPegasusForConditionalGeneration`) in a separate PR.
            if names == "past_key_values":
                return

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model):

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            pt_inputs_dict = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
            pt_inputs_dict_maybe_with_labels = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict_maybe_with_labels)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }
            pt_inputs_dict_maybe_with_labels = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v
                for k, v in pt_inputs_dict_maybe_with_labels.items()
            }

            # Original test: check without `labels`
445
            with torch.no_grad():
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
                pt_outputs = pt_model(**pt_inputs_dict)
            tf_outputs = tf_model(tf_inputs_dict)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

            # check the case where `labels` is passed
            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs_dict_maybe_with_labels)
                tf_outputs = tf_model(tf_inputs_dict_maybe_with_labels)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                # TODO: identify which models
                tf_loss = getattr(tf_outputs, "loss", None)
                pt_loss = getattr(pt_outputs, "loss", None)

                # Some PT models return loss while the corresponding TF models don't (i.e. `None` for `loss`).
                #   - TFFlaubertWithLMHeadModel
                #   - TFFunnelForPreTraining
                #   - TFElectraForPreTraining
                #   - TFXLMWithLMHeadModel
                # TODO: Fix PT/TF diff -> remove this condition to fail the test if a diff occurs
                if not ((tf_loss is None and pt_loss is None) or (tf_loss is not None and pt_loss is not None)):
                    if model_class.__name__ not in [
                        "TFFlaubertWithLMHeadModel",
                        "TFFunnelForPreTraining",
                        "TFElectraForPreTraining",
                        "TFXLMWithLMHeadModel",
482
                        "TFTransfoXLLMHeadModel",
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                    ]:
                        self.assertEqual(tf_loss is None, pt_loss is None)

                tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                # TODO: remove these 2 conditions once the above TODOs (above loss) are implemented
                # (Also, `TFTransfoXLLMHeadModel` has no `loss` while `TransfoXLLMHeadModel` return `losses`)
                if tf_keys != pt_keys:
                    if model_class.__name__ not in [
                        "TFFlaubertWithLMHeadModel",
                        "TFFunnelForPreTraining",
                        "TFElectraForPreTraining",
                        "TFXLMWithLMHeadModel",
497
498
                        "TFTransfoXLLMHeadModel",
                    ]:
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
                        self.assertEqual(tf_keys, pt_keys)

                # Since we deliberately make some tests pass above (regarding the `loss`), let's still try to test
                # some remaining attributes in the outputs.
                # TODO: remove this block of `index` computing once the above TODOs (above loss) are implemented
                # compute the 1st `index` where `tf_keys` and `pt_keys` is different
                index = 0
                for _ in range(min(len(tf_keys), len(pt_keys))):
                    if tf_keys[index] == pt_keys[index]:
                        index += 1
                    else:
                        break
                if tf_keys[:index] != pt_keys[:index]:
                    self.assertEqual(tf_keys, pt_keys)

                # Some models require extra condition to return loss. For example, `(TF)BertForPreTraining` requires
                # both`labels` and `next_sentence_label`.
                if tf_loss is not None and pt_loss is not None:

                    # check anything else than `loss`
                    keys = tuple([k for k in tf_keys])
                    check_outputs(tf_outputs[1:index], pt_outputs[1:index], model_class, names=keys[1:index])

                    # check `loss`

                    # tf models returned loss is usually a tensor rather than a scalar.
                    # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
                    # Change it here to a scalar to match PyTorch models' loss
                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.detach().to("cpu").numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        self.assertLessEqual(max_diff, 1e-5)

        for model_class in self.all_model_classes:

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
542

543
544
            # Output all for aggressive testing
            config.output_hidden_states = True
545
            if self.has_attentions:
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                config.output_attentions = True

            for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
                if k in inputs_dict:
                    attention_mask = inputs_dict[k]
                    # make sure no all 0s attention masks - to avoid failure at this moment.
                    # TODO: remove this line once the TODO below is implemented.
                    attention_mask = tf.ones_like(attention_mask, dtype=tf.int32)
                    # Here we make the first sequence with all 0s as attention mask.
                    # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                    # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                    # TODO: enable this block once the large negative values thing is cleaned up.
                    # (see https://github.com/huggingface/transformers/issues/14859)
                    # attention_mask = tf.concat(
                    #     [
                    #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                    #         tf.cast(attention_mask[1:], dtype=tf.int32)
                    #     ],
                    #     axis=0
                    # )
                    inputs_dict[k] = attention_mask

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
573

574
575
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            tf_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
576

577
578
579
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
Lysandre's avatar
Lysandre committed
580

581
            check_pt_tf_models(tf_model, pt_model)
582
583

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
584
            with tempfile.TemporaryDirectory() as tmpdirname:
585
586
587
588
589
590
591
592
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

593
            check_pt_tf_models(tf_model, pt_model)
594
595
596

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
597
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
598
599
600
601
602
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
621
                inputs = {
622
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
623
624
625
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
626
                    ),
Julien Plu's avatar
Julien Plu committed
627
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
628
                }
Sayak Paul's avatar
Sayak Paul committed
629
630
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
631
632
633
634
635
636
637
638
639
640
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
655
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
656
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
657
            else:
Yih-Dar's avatar
Yih-Dar committed
658
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
659

660
661
            # Prepare our model
            model = model_class(config)
662
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
663
            # Let's load it from the disk to be sure we can use pretrained weights
664
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
665
                model.save_pretrained(tmpdirname, saved_model=False)
666
667
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
668
            outputs_dict = model(inputs)
669
670
            hidden_states = outputs_dict[0]

671
            # Add a dense layer on top to test integration with other keras modules
672
673
674
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
675
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
676
677
678
679
680
681
682
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
683
684
685
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
686

687
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
688
            outputs_keywords = model(**inputs_keywords)
689
690
691
692
693
694
695
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
696
        config.return_dict = True
697
698
699
700
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
701

Julien Plu's avatar
Julien Plu committed
702
703
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
704
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
705
706
707
708
709
710
711
712
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
713
714
715
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
716
717
718
719
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
720
            )
Julien Plu's avatar
Julien Plu committed
721
722
723
724
725
726
727

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
728
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
729
730
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
731

732
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
733
734
735
736
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
737

738
739
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
740
            config.output_attentions = True
741
            model = model_class(config)
742
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
743
744
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
745
746
747

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
748
749
            config.output_hidden_states = True
            model = model_class(config)
750
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
751

752
753
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
754
            check_encoder_attentions_output(outputs)
755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
798
799
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
824
825
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
826
827
828
            else:
                check_attentions_validity(outputs.attentions)

829
830
831
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
832
        def check_hidden_states_output(config, inputs_dict, model_class):
833
            model = model_class(config)
834
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
835
836
837
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
838

Julien Plu's avatar
Julien Plu committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
862

Joseph Liu's avatar
Joseph Liu committed
863
864
865
866
867
868
869
870
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

871
872
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
873
        text_in_text_out_models = (
874
875
876
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
877
        )
Joao Gante's avatar
Joao Gante committed
878
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
879
880
881

        for model_class in self.all_model_classes:
            model = model_class(config)
882
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
883
            if model_class in text_in_text_out_models:
884
                x = model.get_output_embeddings()
885
                assert isinstance(x, tf.keras.layers.Layer)
886
887
888
889
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
890
891
892
893
894
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
895
            else:
896
                x = model.get_output_embeddings()
897
                assert x is None
898
899
                name = model.get_bias()
                assert name is None
900
901
902
903
904
905

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
906
            first, second = (
907
908
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
909
            )
910
911
912
913
914
915
916
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

972
973
974
975
976
977
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

978
979
            inputs = copy.deepcopy(inputs_dict)

980
981
982
983
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
984
                encoder_input_ids = inputs["input_ids"]
985
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
986
                del inputs["input_ids"]
987
988
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
989
            if not self.is_encoder_decoder:
990
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
991
            else:
992
993
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
994

995
996
            inputs = self._prepare_for_class(inputs, model_class)

997
            model(inputs)
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1018
1019
1020
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1021

1022
1023
1024
1025
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1026
1027

        def _get_word_embedding_weight(model, embedding_layer):
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1047

1048
1049
1050
1051
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1052
1053
1054
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1055
                # reshape the embeddings
1056
1057
1058
1059
1060
1061
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1062
                assert_size = size if size is not None else config.vocab_size
1063
1064
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1065
1066
                # check that weights remain the same after resizing
                models_equal = True
1067
1068
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1069
1070
1071
                        models_equal = False
                self.assertTrue(models_equal)

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1092
    def test_lm_head_model_random_no_beam_search_generate(self):
1093
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1094
        input_ids = inputs_dict.get("input_ids", None)
1095

1096
        # iterate over all generative models
1097
1098
1099
1100
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1101
                # if bos token id is not defined model needs input_ids
1102
                with self.assertRaises(ValueError):
1103
                    model.generate(do_sample=True, max_length=5)
1104
                # num_return_sequences = 1
1105
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1106
1107
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1108
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1109

1110
            with self.assertRaises(ValueError):
1111
                # generating multiple sequences when no beam search generation
1112
1113
1114
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1115
1116
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1117
1118

            # check bad words tokens language generation
1119
1120
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1121
            output_tokens = model.generate(
1122
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1123
            )
1124
            # only count generated tokens
1125
1126
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1127

1128
1129
1130
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1131
1132
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1161
1162
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1163
        input_ids = inputs_dict.get("input_ids", None)
1164
1165
1166
1167
1168

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1169
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1180
1181
1182
1183
1184
1185
1186
1187
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1188
1189
1190
1191
1192
1193
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1194
            output_tokens = model.generate(
1195
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1196
            )
1197
            # only count generated tokens
1198
1199
1200
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1201
1202
1203
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1204
1205
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1236
1237
1238
1239
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1240
            if getattr(model, "hf_compute_loss", None):
1241
1242
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1243
1244
1245
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1246
1247
                loss_size = tf.size(added_label)

1248
                if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
1249
1250
1251
1252
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1253
1254
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Joao Gante's avatar
Joao Gante committed
1255
1256
1257
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
1258

Joao Gante's avatar
Joao Gante committed
1259
                loss = model(model_input, **prepared_for_class)[0]
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1272
1273
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1274
1275

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1276
                tuple_index_mapping = {0: input_name}
1277
                for label_key in label_keys:
1278
                    label_key_index = signature_names.index(label_key)
1279
1280
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1281
1282
1283
1284
1285
1286
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1287
1288

                for index, value in sorted_tuple_index_mapping:
1289
1290
                    list_input[index] = prepared_for_class[value]

1291
1292
1293
                tuple_input = tuple(list_input)

                # Send to model
1294
1295
                loss = model(tuple_input[:-1])[0]

1296
1297
                self.assertEqual(loss.shape, [loss_size])

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1332
    def test_load_with_mismatched_shapes(self):
1333
1334
        if not self.test_mismatched_shapes:
            return
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1351
1352
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1378
1379
1380
1381
1382
1383
1384
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1403
    def _check_generated_ids(self, output_ids):
1404
1405
1406
1407
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1420

thomwolf's avatar
thomwolf committed
1421
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1434
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1435
1436

    return output
1437
1438


Yih-Dar's avatar
Yih-Dar committed
1439
1440
1441
1442
1443
1444
1445
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
    attn_mask = tf.concat([tf.constant(value=1, shape=(shape[0], 1), dtype=dtype), attn_mask[:, 1:]], axis=1)
    return attn_mask


1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1538
1539
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1551
1552
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1553
1554
1555
1556
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1557

1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
    # tests whether the unpack_inputs function behaves as expected
    def test_unpack_inputs(self):
        class DummyModel:
            def __init__(self):
                config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
                self.config = PretrainedConfig(**config_kwargs)

            @unpack_inputs
            def call(
                self, input_ids=None, past=None, output_attentions=None, output_hidden_states=None, return_dict=None
            ):
                return input_ids, past, output_attentions, output_hidden_states, return_dict

        dummy_model = DummyModel()
        input_ids = tf.constant([0, 1, 2, 3])
        past = tf.constant([4, 5, 6, 7])

        # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
        output = dummy_model.call(input_ids=input_ids, past=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 2: Same as above, but with positional arguments.
        output = dummy_model.call(input_ids, past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 3: We can also pack everything in the first input.
        output = dummy_model.call(input_ids={"input_ids": input_ids, "past": past})
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 4: Explicit boolean arguments should override the config.
        output = dummy_model.call(input_ids=input_ids, past=past, output_attentions=False, return_dict=True)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertTrue(output[4])

        # test case 5: Unexpected arguments should raise an exception.
        with self.assertRaises(ValueError):
            output = dummy_model.call(input_ids=input_ids, past=past, foo="bar")

        # test case 6: Despite the above, `past_key_values` should be interchangeable with `past`
        # (the decorator moves it to `past`, or vice-versa, depending on the signature).
        output = dummy_model.call(input_ids=input_ids, past_key_values=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

Sylvain Gugger's avatar
Sylvain Gugger committed
1620
1621
1622
1623
1624
1625

@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1626
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1627
1628
1629
1630

    @classmethod
    def tearDownClass(cls):
        try:
1631
            delete_repo(token=cls._token, name="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1632
1633
1634
1635
        except HTTPError:
            pass

        try:
1636
            delete_repo(token=cls._token, name="test-model-tf-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)
        with tempfile.TemporaryDirectory() as tmp_dir:
1648
            model.save_pretrained(os.path.join(tmp_dir, "test-model-tf"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1649

1650
            new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1651
1652
1653
1654
1655
1656
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)

Matt's avatar
Matt committed
1657
1658
1659
1660
1661
1662
1663
1664
1665
    def test_push_to_hub_with_model_card(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.push_to_hub(os.path.join(tmp_dir, "test-model-tf"))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "test-model-card-tf", "README.md")))

Sylvain Gugger's avatar
Sylvain Gugger committed
1666
1667
1668
1669
1670
1671
1672
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1673
                os.path.join(tmp_dir, "test-model-tf-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
1674
1675
1676
1677
1678
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

1679
            new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1680
1681
1682
1683
1684
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)