test_modeling_tf_common.py 51.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
27
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        TF_MODEL_FOR_PRETRAINING_MAPPING,
40
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
41
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
42
43
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
44
45
46
        TFAdaptiveEmbedding,
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
47
    )
48

Julien Chaumond's avatar
Julien Chaumond committed
49
50
51
52
53
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
54
55
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
56
                )
Julien Plu's avatar
Julien Plu committed
57
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
62

63

thomwolf's avatar
thomwolf committed
64
65
66
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
67
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
68
69
70
71
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


72
73
@require_tf
class TFModelTesterMixin:
74

75
76
    model_tester = None
    all_model_classes = ()
77
    all_generative_model_classes = ()
78
79
    test_resize_embeddings = True
    is_encoder_decoder = False
80

Lysandre Debut's avatar
Lysandre Debut committed
81
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
82
83
        inputs_dict = copy.deepcopy(inputs_dict)

84
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
85
            inputs_dict = {
86
87
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
88
89
90
                else v
                for k, v in inputs_dict.items()
            }
91
92
93

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
94
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
95
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
96
97
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
98
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
99
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
100
101
            elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values():
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
102
103
104
105
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
106
                *TF_MODEL_FOR_PRETRAINING_MAPPING.values(),
107
108
109
110
111
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
112
113
        return inputs_dict

114
115
    def test_initialization(self):
        pass
116

117
118
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
119

120
121
        for model_class in self.all_model_classes:
            model = model_class(config)
122
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
123

124
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
125
                model.save_pretrained(tmpdirname, saved_model=False)
126
                model = model_class.from_pretrained(tmpdirname)
127
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
128

129
                self.assert_outputs_same(after_outputs, outputs)
130

131
132
133
134
135
136
137
138
139
140
141
142
143
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

144
145
146
147
148
149
150
151
152
153
154
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
155
                    "input_ids",
156
157
158
159
160
161
162
163
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)

            else:
Julien Plu's avatar
Julien Plu committed
164
                expected_arg_names = ["input_ids"]
165
166
                self.assertListEqual(arg_names[:1], expected_arg_names)

Julien Plu's avatar
Julien Plu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model")
            self.assertTrue(os.path.exists(saved_model_dir))

    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            model(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
                saved_model_dir = os.path.join(tmpdirname, "saved_model")
                self.assertTrue(os.path.exists(saved_model_dir))

Julien Plu's avatar
Julien Plu committed
207
208
209
210
211
212
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
213
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
214
215
216
217
218
            # A saved model is always executed in graph mode, since we merged the PR #8777
            # the booleans in graph mode are always the ones in the config, then we update
            # the use_cache property if it exists in order to have similar booleans with the inputs
            if "use_cache" in class_inputs_dict:
                config.use_cache = class_inputs_dict.pop("use_cache")
Julien Plu's avatar
Julien Plu committed
219
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
220
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
221
222

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
223
224
225
                model.save_pretrained(tmpdirname)
                saved_model_dir = os.path.join(tmpdirname, "saved_model")
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
226
                outputs = model(class_inputs_dict)
227
228
229
230
231
232

                if self.is_encoder_decoder:
                    output = outputs["encoder_hidden_states"] if isinstance(outputs, dict) else outputs[-1]
                else:
                    output = outputs["hidden_states"] if isinstance(outputs, dict) else outputs[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
233
                hidden_states = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
234
                self.assertEqual(len(outputs), num_out)
Lysandre Debut's avatar
Lysandre Debut committed
235
236
237
238
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )
                self.assertEqual(len(hidden_states), expected_num_layers)
Julien Plu's avatar
Julien Plu committed
239
                self.assertListEqual(
Lysandre's avatar
Lysandre committed
240
241
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
242
243
244
245
246
247
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
Lysandre Debut's avatar
Lysandre Debut committed
248
249
250

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Julien Plu's avatar
Julien Plu committed
251
252

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
253
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
254
255
256
257
258
            # A saved model is always executed in graph mode, since we merged the PR #8777
            # the booleans in graph mode are always the ones in the config, then we update
            # the use_cache property if it exists in order to have similar booleans with the inputs
            if "use_cache" in class_inputs_dict:
                config.use_cache = class_inputs_dict.pop("use_cache")
Julien Plu's avatar
Julien Plu committed
259
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
260
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
261
262

            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
263
264
265
                saved_model_dir = os.path.join(tmpdirname, "saved_model")
                model.save_pretrained(saved_model_dir)
                model = tf.keras.models.load_model(saved_model_dir)
Lysandre Debut's avatar
Lysandre Debut committed
266
                outputs = model(class_inputs_dict)
267
268
269
270
271
272

                if self.is_encoder_decoder:
                    output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1]
                else:
                    output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
273
                attentions = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
274
275
276
277
278
279
280
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

281
282
283
284
285
286
287
288
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
289
            if module_member_name.endswith("MainLayer")
290
            for module_member in (getattr(module, module_member_name),)
291
292
293
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
294
295
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
296
297
298
299
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
300
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
301
302
303
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
304

305
306
307
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
308

309
310
311
312
313
314
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
315
316
317
318
319
320
321
322
323
324
325
326
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
327
328
329
330
331
332
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
333
334
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
335
        elif isinstance(after_outputs, dict):
336
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
337
338
        else:
            out_1 = after_outputs[0].numpy()
339
        out_2 = outputs[0].numpy()
340
        self.assertEqual(out_1.shape, out_2.shape)
341
342
343
344
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
345

346
    @is_pt_tf_cross_test
347
    def test_pt_tf_model_equivalence(self):
thomwolf's avatar
thomwolf committed
348

349
        import torch
350

351
        import transformers
thomwolf's avatar
thomwolf committed
352

353
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
354

355
        for model_class in self.all_model_classes:
356
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
357
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
358

359
            config.output_hidden_states = True
360

361
362
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
363

364
            # Check we can load pt model in tf and vice-versa with model => model functions
365

366
367
368
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
369
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
370

371
372
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
373
374
375
376
377
378
379
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

380
381
382
383
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

384
385
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
386
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
387
388
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
389

390
391
392
393
394
395
396
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
397

398
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
399
            self.assertLessEqual(max_diff, 4e-2)
400
401

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
402
            with tempfile.TemporaryDirectory() as tmpdirname:
403
404
405
406
407
408
409
410
411
412
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
413
414
415
416
417
418
419
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
420
421
422
423
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

424
425
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
426
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
427
428
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
429
430
431
432
433
434
435
436
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

437
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
438
            self.assertLessEqual(max_diff, 4e-2)
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
                del inputs_dict["use_cache"]
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
Julien Plu's avatar
Julien Plu committed
475
                (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
476
477
478
479
480
481
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

Julien Plu's avatar
Julien Plu committed
482
            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

503
504
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
505
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
506
507
508
509
510
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
511
512
513
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
514
515
516
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
517
                    ),
Julien Plu's avatar
Julien Plu committed
518
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
519
520
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
Julien Plu's avatar
Julien Plu committed
521
                input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
522
            else:
Julien Plu's avatar
Julien Plu committed
523
                input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
524

525
526
            # Prepare our model
            model = model_class(config)
527
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
528
            # Let's load it from the disk to be sure we can use pretrained weights
529
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
530
                model.save_pretrained(tmpdirname, saved_model=False)
531
532
533
534
535
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

536
            # Add a dense layer on top to test integration with other keras modules
537
538
539
540
541
542
543
544
545
546
547
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
548
549
550
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
551

552
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
553
            input_ids = inputs_keywords.pop("input_ids", None)
554
555
556
557
558
559
560
561
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
562
        config.return_dict = True
563
564
565
566
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
567

Julien Plu's avatar
Julien Plu committed
568
569
570
571
572
573
574
575
576
577
578
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(out_len % 2, 0)
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
579
580
581
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
582
583
584
585
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
586
            )
Julien Plu's avatar
Julien Plu committed
587
588
589
590
591
592
593

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
594
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
595
596
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
597

598
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
599
600
601
602
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
603

604
605
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
606
            config.output_attentions = True
607
            model = model_class(config)
608
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
609
610
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
611
612
613

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
614
615
            config.output_hidden_states = True
            model = model_class(config)
616
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
617

618
619
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
620
            check_encoder_attentions_output(outputs)
621

622
623
624
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
625
        def check_hidden_states_output(config, inputs_dict, model_class):
626
            model = model_class(config)
627
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
628
629
630
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
631

Julien Plu's avatar
Julien Plu committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
655

Joseph Liu's avatar
Joseph Liu committed
656
657
658
659
660
661
662
663
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

664
665
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
666
667
668
669
670
        list_lm_models = (
            list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values())
            + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values())
            + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values())
        )
671
672
673

        for model_class in self.all_model_classes:
            model = model_class(config)
674
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
675
676
677
678
679
680
681
682
683
684
685

            if model_class in list_lm_models:
                x = model.get_output_layer_with_bias()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_prefix_bias_name()
                assert isinstance(name, str)
            else:
                x = model.get_output_layer_with_bias()
                assert x is None
                name = model.get_prefix_bias_name()
                assert x is None
686
687
688
689
690
691

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
692
            first, second = (
693
694
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
695
            )
696
697
698
699
700
701
702
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

758
759
760
761
762
763
764
    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
765
            try:
766
                x = wte([input_ids], mode="embedding")
767
            except Exception:
thomwolf's avatar
thomwolf committed
768
                try:
769
                    x = wte([input_ids, None, None, None], mode="embedding")
770
                except Exception:
771
                    if hasattr(self.model_tester, "embedding_size"):
Lysandre's avatar
Lysandre committed
772
773
774
775
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.embedding_size],
                            dtype=tf.dtypes.float32,
                        )
776
                    else:
Lysandre's avatar
Lysandre committed
777
778
779
780
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.hidden_size],
                            dtype=tf.dtypes.float32,
                        )
781
782
783
784
785
786
787
788
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

789
790
791
792
793
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
794
                encoder_input_ids = inputs["input_ids"]
795
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
796
                del inputs["input_ids"]
797
798
                inputs.pop("decoder_input_ids", None)

799
            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
800
            if not self.is_encoder_decoder:
801
                inputs["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
802
            else:
803
804
                inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
805

806
            model(inputs)
807

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

829
830
831
832
833
834
835
836
837
838
839
840
841
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INPUT_SHAPE = [1, 10, config.hidden_size]
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                emb_old = model.get_input_embeddings()
                emb_old.build(INPUT_SHAPE)
                # reshape the embeddings
                new_embeddings = model._get_resized_embeddings(emb_old, size)
Julien Chaumond's avatar
Julien Chaumond committed
842
                # # check that the resized embeddings size matches the desired size.
843
844
845
846
847
848
849
850
851
852
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_embeddings.shape[0], assert_size)
                # check that weights remain the same after resizing
                emd_old_weights = model._get_word_embeddings(emb_old)
                models_equal = True
                for p1, p2 in zip(emd_old_weights.numpy(), new_embeddings.numpy()):
                    if np.sum(abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

853
    def test_lm_head_model_random_no_beam_search_generate(self):
854
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
855
        input_ids = inputs_dict["input_ids"]
856

857
        # iterate over all generative models
858
859
860
861
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
862
                # if bos token id is not defined mobel needs input_ids
863
                with self.assertRaises(AssertionError):
864
                    model.generate(do_sample=True, max_length=5)
865
                # num_return_sequences = 1
866
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
867
            else:
868
                # num_return_sequences = 1
869
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
870
871

            with self.assertRaises(AssertionError):
872
                # generating multiple sequences when no beam search generation
873
874
875
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

876
877
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
878
879

            # check bad words tokens language generation
880
881
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
882
            output_tokens = model.generate(
883
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
884
            )
885
            # only count generated tokens
886
887
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
888

889
890
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
891
        input_ids = inputs_dict["input_ids"]
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
908
909
910
911
912
913
914
915
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
916
917
918
919
920
921
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
922
            output_tokens = model.generate(
923
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
924
            )
925
            # only count generated tokens
926
927
928
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

929
930
931
932
933
934
935
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
936
937
938
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
939
940
                loss_size = tf.size(added_label)

941
942
943
944
945
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

946
947
948
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
949

950
951
952
953
954
955
956
957
958
959
960
961
962
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
963
964
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
965
966

                # Create a dictionary holding the location of the tensors in the tuple
967
                tuple_index_mapping = {0: "input_ids"}
968
                for label_key in label_keys:
969
                    label_key_index = signature_names.index(label_key)
970
971
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
972
973
974
975
976
977
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
978
979

                for index, value in sorted_tuple_index_mapping:
980
981
                    list_input[index] = prepared_for_class[value]

982
983
984
                tuple_input = tuple(list_input)

                # Send to model
985
986
                loss = model(tuple_input[:-1])[0]

987
988
                self.assertEqual(loss.shape, [loss_size])

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1007
    def _check_generated_ids(self, output_ids):
1008
1009
1010
1011
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1024

thomwolf's avatar
thomwolf committed
1025
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1038
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1039
1040

    return output
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1119
1120
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1132
1133
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1134
1135
1136
1137
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)