test_modeling_tf_common.py 106 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
import unittest.mock as mock
25
from importlib import import_module
Matt's avatar
Matt committed
26
from math import isnan
27
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
28

29
30
from datasets import Dataset

31
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
from transformers import is_tf_available, is_torch_available
34
from transformers.configuration_utils import PretrainedConfig
35
from transformers.models.auto import get_values
36
from transformers.testing_utils import (  # noqa: F401
37
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    USER,
39
    CaptureLogger,
40
    CaptureStdout,
Lysandre Debut's avatar
Lysandre Debut committed
41
42
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    is_staging_test,
Lysandre Debut's avatar
Lysandre Debut committed
44
    require_tf,
45
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
46
    slow,
47
    tooslow,
48
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
49
)
50
from transformers.utils import logging
51
from transformers.utils.generic import ModelOutput
52

Aymeric Augustin's avatar
Aymeric Augustin committed
53

54
55
56
logger = logging.get_logger(__name__)


57
if is_tf_available():
Arthur's avatar
Arthur committed
58
    import h5py
thomwolf's avatar
thomwolf committed
59
    import numpy as np
60
    import tensorflow as tf
61

62
    from transformers import (
63
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
64
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
65
        TF_MODEL_FOR_MASKED_LM_MAPPING,
66
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
67
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
68
        TF_MODEL_FOR_PRETRAINING_MAPPING,
69
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
70
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
71
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
72
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
73
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
        BertConfig,
75
        TFAutoModel,
76
        TFAutoModelForSeq2SeqLM,
77
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
78
        TFBertModel,
79
80
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
81
    )
82
83
84
85
86
87
88
89
90
91
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
Arthur's avatar
Arthur committed
92
93
94
95
96
97
    from transformers.modeling_tf_utils import (
        TF2_WEIGHTS_INDEX_NAME,
        TF2_WEIGHTS_NAME,
        tf_shard_checkpoint,
        unpack_inputs,
    )
Joao Gante's avatar
Joao Gante committed
98
    from transformers.tf_utils import stable_softmax
99

Julien Chaumond's avatar
Julien Chaumond committed
100
101
102
103
104
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
105
106
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
107
                )
Julien Plu's avatar
Julien Plu committed
108
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
109
110
111
112
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
113

114
115
116
if is_torch_available():
    import torch

117

thomwolf's avatar
thomwolf committed
118
119
120
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
121
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
122
123
124
125
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


126
127
@require_tf
class TFModelTesterMixin:
128

129
130
    model_tester = None
    all_model_classes = ()
131
    all_generative_model_classes = ()
132
    test_mismatched_shapes = True
133
    test_resize_embeddings = True
134
    test_head_masking = True
135
    is_encoder_decoder = False
136
    has_attentions = True
137

Lysandre Debut's avatar
Lysandre Debut committed
138
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
139
140
        inputs_dict = copy.deepcopy(inputs_dict)

141
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
142
            inputs_dict = {
143
144
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
145
146
147
                else v
                for k, v in inputs_dict.items()
            }
148
149

        if return_labels:
150
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
151
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
152
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
153
154
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
155
156
157
158
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
159
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
160
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
161
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
162
            elif model_class in [
163
164
165
166
167
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
168
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
169
170
171
172
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
173
174
        return inputs_dict

175
176
    def test_initialization(self):
        pass
177

178
179
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
180

181
182
        for model_class in self.all_model_classes:
            model = model_class(config)
183
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
184

185
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
186
                model.save_pretrained(tmpdirname, saved_model=False)
187
                model = model_class.from_pretrained(tmpdirname)
188
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
189

190
                self.assert_outputs_same(after_outputs, outputs)
191

192
193
194
195
196
197
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
198
199
200
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
201
            new_model = model_class.from_config(model.get_config())
202
203
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
204
205
206
207
208
209
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    @slow
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
            self.assertTrue(os.path.exists(saved_model_dir))

    def test_prepare_serving_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(inputs)
            serving_outputs = model.serving_output(outputs)

            for k, v in serving_outputs.items():
                # Check that we have one of three possible outputs: None, tuple of tensors or a tensor
                if isinstance(v, tuple):
                    self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
                elif v is not None:
                    self.assertIsInstance(v, tf.Tensor)
                else:
                    self.assertIsNone(v)

251
252
253
254
255
256
257
258
259
260
261
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
262
                    "input_ids",
263
264
265
266
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
267
                expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
268
                expected_arg_names.extend(
269
270
271
272
273
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
274
275
276
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
277
278

            else:
Julien Plu's avatar
Julien Plu committed
279
                expected_arg_names = ["input_ids"]
280
281
                self.assertListEqual(arg_names[:1], expected_arg_names)

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

324
    @require_tf2onnx
325
326
327
328
329
330
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
331
        import tf2onnx
332
333
334
335
336
337
338

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

339
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
340

341
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
342

343
344
345
346
347
348
349
350
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
351
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
352
353
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
354
            for module_member in (getattr(module, module_member_name),)
355
356
357
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
358
359
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
360
361
362
363
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
364
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
365
366
367
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
368

369
370
371
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
372

373
374
375
376
377
378
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
379
380
381
382
383
384
385
386
387
388
389
390
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
391
392
393
394
395
396
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
397
398
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
399
        elif isinstance(after_outputs, dict):
400
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
401
402
        else:
            out_1 = after_outputs[0].numpy()
403
        out_2 = outputs[0].numpy()
404
        self.assertEqual(out_1.shape, out_2.shape)
405
406
407
408
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
409

410
411
412
413
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
414

415
416
417
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
thomwolf's avatar
thomwolf committed
418

419
420
421
422
423
424
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
            "TFTransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
474
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
495

496
497
498
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
499

500
501
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
502

503
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
504

505
506
507
508
509
510
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
                )
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
527

528
529
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
530

531
532
533
534
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
535

536
537
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
538

539
540
541
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
542

543
544
545
546
547
548
549
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])

            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
550

551
552
553
554
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
555

556
557
558
559
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
560
561
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
562
            )
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

    def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):

        pt_inputs_dict = {}
        for name, key in tf_inputs_dict.items():
            if type(key) == bool:
                pt_inputs_dict[name] = key
            elif name == "input_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "pixel_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "input_features":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            # other general float inputs
            elif tf_inputs_dict[name].dtype.is_floating:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            else:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

        return pt_inputs_dict

    def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):

        pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)

        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }

        # send pytorch model to the correct device
        pt_model.to(torch_device)

        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
615
616
617
618

        for model_class in self.all_model_classes:

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
619

620
621
            # Output all for aggressive testing
            config.output_hidden_states = True
622
            config.output_attentions = self.has_attentions
623

624
625
626
627
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
628
629
630
631
632
633

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
634

635
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
636
            tf_inputs_dict_with_labels = self._prepare_for_class(
637
638
639
640
641
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
642

643
644
645
646
647
            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
                tf_inputs_dict_with_labels = None

648
649
650
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
Lysandre's avatar
Lysandre committed
651

652
653
654
655
656
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
657
658

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
659
            with tempfile.TemporaryDirectory() as tmpdirname:
660
661
662
663
664
665
666
667
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

668
669
670
671
672
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
673
674
675

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
676
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
677
678
679
680
681
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
700
                inputs = {
701
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
702
703
704
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
705
                    ),
Julien Plu's avatar
Julien Plu committed
706
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
707
                }
Sayak Paul's avatar
Sayak Paul committed
708
709
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
710
711
712
713
714
715
716
717
718
719
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
734
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
735
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
736
            else:
Yih-Dar's avatar
Yih-Dar committed
737
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
738

739
740
            # Prepare our model
            model = model_class(config)
741
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
742
            # Let's load it from the disk to be sure we can use pretrained weights
743
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
744
                model.save_pretrained(tmpdirname, saved_model=False)
745
746
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
747
            outputs_dict = model(inputs)
748
749
            hidden_states = outputs_dict[0]

750
            # Add a dense layer on top to test integration with other keras modules
751
752
753
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
754
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
755
756
757
758
759
760
761
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
762
763
764
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
765

766
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
767
            outputs_keywords = model(**inputs_keywords)
768
769
770
771
772
773
774
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
775
        config.return_dict = True
776
777
778
779
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
780

Julien Plu's avatar
Julien Plu committed
781
782
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
783
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
784
785
786
787
788
789
790
791
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
792
793
794
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
795
796
797
798
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
799
            )
Julien Plu's avatar
Julien Plu committed
800
801
802
803
804
805

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
806
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
807
808
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
809

810
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
811
812
813
814
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
815

816
817
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
818
            config.output_attentions = True
819
            model = model_class(config)
820
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
821
822
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
823
824
825

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
826
827
            config.output_hidden_states = True
            model = model_class(config)
828
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
829

830
831
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
832
            check_encoder_attentions_output(outputs)
833

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
876
877
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
902
903
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
904
905
906
            else:
                check_attentions_validity(outputs.attentions)

907
908
909
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
910
        def check_hidden_states_output(config, inputs_dict, model_class):
911
            model = model_class(config)
912
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
913
914
915
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
916

Julien Plu's avatar
Julien Plu committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
940

Joseph Liu's avatar
Joseph Liu committed
941
942
943
944
945
946
947
948
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

949
950
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
951
        text_in_text_out_models = (
952
953
954
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
955
        )
Joao Gante's avatar
Joao Gante committed
956
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
957
958
959

        for model_class in self.all_model_classes:
            model = model_class(config)
960
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
961
            if model_class in text_in_text_out_models:
962
                x = model.get_output_embeddings()
963
                assert isinstance(x, tf.keras.layers.Layer)
964
965
966
967
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
968
969
970
971
972
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
973
            else:
974
                x = model.get_output_embeddings()
975
                assert x is None
976
977
                name = model.get_bias()
                assert name is None
978
979
980
981
982
983

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
984
            first, second = (
985
986
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
987
            )
988
989
990
991
992
993
994
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
Sylvain Gugger's avatar
Sylvain Gugger committed
1012
1013
1014
1015
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1031
1032
1033
1034
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1035

1036
1037
1038
1039
1040
            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)
1041

1042
1043
1044
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
1045

1046
1047
1048
1049
                if self.has_attentions:
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1050

1051
1052
1053
1054
1055
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(
                        model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                    )
1056

1057
1058
1059
1060
1061
1062
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

1063
1064
            inputs = copy.deepcopy(inputs_dict)

1065
1066
1067
1068
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
1069
                encoder_input_ids = inputs["input_ids"]
1070
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
1071
                del inputs["input_ids"]
1072
1073
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
1074
            if not self.is_encoder_decoder:
1075
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
1076
            else:
1077
1078
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
1079

1080
1081
            inputs = self._prepare_for_class(inputs, model_class)

1082
            model(inputs)
1083

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1103
1104
1105
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1106

1107
1108
1109
1110
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1111
1112

        def _get_word_embedding_weight(model, embedding_layer):
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1132

1133
1134
1135
1136
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1137
1138
1139
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1140
                # reshape the embeddings
1141
1142
1143
1144
1145
1146
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1147
                assert_size = size if size is not None else config.vocab_size
1148
1149
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1150
1151
                # check that weights remain the same after resizing
                models_equal = True
1152
1153
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1154
1155
1156
                        models_equal = False
                self.assertTrue(models_equal)

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1177
    def test_lm_head_model_random_no_beam_search_generate(self):
1178
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1179
        input_ids = inputs_dict.get("input_ids", None)
1180

1181
        # iterate over all generative models
1182
1183
1184
1185
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1186
                # if bos token id is not defined model needs input_ids
1187
                with self.assertRaises(ValueError):
1188
                    model.generate(do_sample=True, max_length=5)
1189
                # num_return_sequences = 1
1190
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1191
1192
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1193
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1194

1195
            with self.assertRaises(ValueError):
1196
                # generating multiple sequences when no beam search generation
1197
1198
1199
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1200
1201
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1202
1203

            # check bad words tokens language generation
1204
1205
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1206
            output_tokens = model.generate(
1207
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1208
            )
1209
            # only count generated tokens
1210
1211
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1212

1213
1214
1215
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1216
1217
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1246
1247
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1248
        input_ids = inputs_dict.get("input_ids", None)
1249
1250
1251
1252
1253

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1254
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1255
1256
1257
1258
1259
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

1260
            with self.assertRaises(ValueError):
1261
1262
1263
1264
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1265
1266
1267
1268
1269
1270
1271
1272
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1273
1274
1275
1276
1277
1278
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1279
            output_tokens = model.generate(
1280
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1281
            )
1282
            # only count generated tokens
1283
1284
1285
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1286
1287
1288
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1289
1290
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1321
1322
1323
1324
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1325
            if getattr(model, "hf_compute_loss", None):
1326
1327
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1328
1329
1330
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
Matt's avatar
Matt committed
1331
                expected_loss_size = added_label.shape.as_list()[:1]
1332

1333
1334
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Joao Gante's avatar
Joao Gante committed
1335
1336
1337
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
1338

Joao Gante's avatar
Joao Gante committed
1339
                loss = model(model_input, **prepared_for_class)[0]
1340
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
Matt's avatar
Matt committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

                # Test that model correctly compute the loss when we mask some positions
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
                if "labels" in prepared_for_class:
                    labels = prepared_for_class["labels"].numpy()
                    if len(labels.shape) > 1 and labels.shape[1] != 1:
                        labels[0] = -100
                        prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                        loss = model(model_input, **prepared_for_class)[0]
1353
                        self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
Matt's avatar
Matt committed
1354
                        self.assertTrue(not np.any(np.isnan(loss.numpy())))
1355
1356
1357
1358

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
1359
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1360
1361
1362
1363
1364
1365

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1366
1367
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1368
1369

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1370
                tuple_index_mapping = {0: input_name}
1371
                for label_key in label_keys:
1372
                    label_key_index = signature_names.index(label_key)
1373
1374
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1375
1376
1377
1378
1379
1380
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1381
1382

                for index, value in sorted_tuple_index_mapping:
1383
1384
                    list_input[index] = prepared_for_class[value]

1385
1386
1387
                tuple_input = tuple(list_input)

                # Send to model
1388
1389
                loss = model(tuple_input[:-1])[0]

1390
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                # Is there a better way to remove these decoder inputs?
                prepared_for_class = {
                    key: val
                    for key, val in prepared_for_class.items()
                    if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "decoder_input_ids")
                }

                possible_label_cols = {
                    "labels",
                    "label",
                    "label_ids",
                    "start_positions",
                    "start_position",
                    "end_positions",
                    "end_position",
                    "next_sentence_label",
                }
                label_names = possible_label_cols.intersection(set(prepared_for_class))
                self.assertGreater(len(label_names), 0, msg="No matching label names found!")
                labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
                inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
                self.assertGreater(len(inputs_minus_labels), 0)
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
                accuracy_classes = [
                    "ForPreTraining",
                    "ForCausalLM",
                    "ForMaskedLM",
                    "ForQuestionAnswering",
                    "ForMultipleChoice",
                    "ForSequenceClassification",
                    "ForTokenClassification",
                    "ForNextSentencePrediction",
                    "LMHeadModel",
                ]
                for accuracy_class in accuracy_classes:
                    if model.__class__.__name__.endswith(accuracy_class):
                        metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
                        break
                else:
                    metrics = []

1439
1440
1441
1442
                model(model.dummy_inputs)  # Build the model so we can get some constant weights
                model_weights = model.get_weights()

                # Run eagerly to save some expensive compilation times
1443
                model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
1444
1445
1446
1447
1448
1449
1450
1451
1452
                # Make sure the model fits without crashing regardless of where we pass the labels
                history1 = model.fit(
                    prepared_for_class,
                    validation_data=prepared_for_class,
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss1 = history1.history["val_loss"][0]
Matt's avatar
Matt committed
1453
                self.assertTrue(not isnan(val_loss1))
1454
                accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}
1455
1456
1457
1458
1459

                # We reinitialize the model here even though our learning rate was zero
                # because BatchNorm updates weights by means other than gradient descent.
                model.set_weights(model_weights)

1460
1461
1462
1463
1464
1465
1466
1467
1468
                history2 = model.fit(
                    inputs_minus_labels,
                    labels,
                    validation_data=(inputs_minus_labels, labels),
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss2 = history2.history["val_loss"][0]
Matt's avatar
Matt committed
1469
                self.assertTrue(not isnan(val_loss2))
1470
                accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
1471
                self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3))
1472
1473
1474
1475
1476
1477
                self.assertEqual(history1.history.keys(), history2.history.keys())
                for key in history1.history.keys():
                    if not key.startswith("val_"):
                        self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
                if metrics:
                    self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")
1478

1479
1480
1481
1482
                # Make sure fit works with tf.data.Dataset and results are consistent
                dataset = tf.data.Dataset.from_tensor_slices(prepared_for_class)
                # Pass in all samples as a batch to match other `fit` calls
                dataset = dataset.batch(len(dataset))
1483
1484
1485
1486

                # Reinitialize to fix batchnorm again
                model.set_weights(model_weights)

1487
1488
1489
1490
1491
1492
1493
1494
                history3 = model.fit(
                    dataset,
                    validation_data=dataset,
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss3 = history3.history["val_loss"][0]
Matt's avatar
Matt committed
1495
                self.assertTrue(not isnan(val_loss3))
1496
1497
1498
1499
1500
1501
                accuracy3 = {key: val[0] for key, val in history3.history.items() if key.endswith("accuracy")}
                self.assertTrue(np.allclose(val_loss1, val_loss3, atol=1e-2, rtol=1e-3))
                self.assertEqual(history1.history.keys(), history3.history.keys())
                if metrics:
                    self.assertTrue(len(accuracy1) == len(accuracy3) > 0, "Missing metrics!")

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
    def test_int64_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
                [tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)]
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1556
    def test_load_with_mismatched_shapes(self):
1557
1558
        if not self.test_mismatched_shapes:
            return
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1575
1576
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1602
1603
1604
1605
1606
1607
1608
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
            else:
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
                    model(test_batch, training=False)

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)

1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    def _test_xla_generate(self, num_beams, num_return_sequences, max_length):
        def _generate_and_check_results(model, config, inputs_dict):
            if "input_ids" in inputs_dict:
                inputs = inputs_dict["input_ids"]
                # make sure there are no pad tokens in prompt, which may trigger unwanted behavior
                if config.pad_token_id is not None:
                    if config.pad_token_id == 0:
                        new_pad_token = config.pad_token_id + 1
                    else:
                        new_pad_token = config.pad_token_id - 1
                else:
                    new_pad_token = None
                inputs = tf.where(inputs != config.pad_token_id, inputs, new_pad_token)
            elif "input_features" in inputs_dict:
                inputs = inputs_dict["input_features"]
            else:
                raise ValueError("No valid generate input found in inputs_dict")

            generated = model.generate(inputs).numpy()
            generate_xla = tf.function(model.generate, jit_compile=True)
            generated_xla = generate_xla(inputs).numpy()
            self.assertListEqual(generated.tolist(), generated_xla.tolist())

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.eos_token_id = None  # Generate until max length
            config.max_length = max_length
            config.do_sample = False
            config.num_beams = num_beams
            config.num_return_sequences = num_return_sequences
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

            # fix config for models with additional sequence-length limiting settings
            for var_name in ["max_position_embeddings", "max_target_positions"]:
                if hasattr(config, var_name):
                    try:
                        setattr(config, var_name, max_length)
                    except NotImplementedError:
                        # xlnet will raise an exception when trying to set
                        # max_position_embeddings.
                        pass

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
            model = model_class(config)

            if model.supports_xla_generation:
                _generate_and_check_results(model, config, inputs_dict)
            else:
                with self.assertRaises(ValueError):
                    _generate_and_check_results(model, config, inputs_dict)

    def test_xla_generate_fast(self):
        """
        Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their
        non XLA counterparts.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
        num_beams = 1
        num_return_sequences = 1
        max_length = 10
        self._test_xla_generate(num_beams, num_return_sequences, max_length)

    @slow
    def test_xla_generate_slow(self):
        """
        Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using
        beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the
        model may need further analysis if it is to be used for XLA generation.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
        num_beams = 8
        num_return_sequences = 2
        max_length = 128
        self._test_xla_generate(num_beams, num_return_sequences, max_length)

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1752
    def _check_generated_ids(self, output_ids):
1753
1754
1755
1756
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1769

thomwolf's avatar
thomwolf committed
1770
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1783
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1784
1785

    return output
1786
1787


Yih-Dar's avatar
Yih-Dar committed
1788
1789
1790
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
1791
    attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
Yih-Dar's avatar
Yih-Dar committed
1792
1793
1794
    return attn_mask


1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1887
1888
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1900
1901
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1902
1903
1904
1905
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1906

1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

1923
1924
1925
1926
1927
1928
    # tests whether the unpack_inputs function behaves as expected
    def test_unpack_inputs(self):
        class DummyModel:
            def __init__(self):
                config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
                self.config = PretrainedConfig(**config_kwargs)
1929
                self.main_input_name = "input_ids"
1930
1931
1932
1933
1934
1935
1936

            @unpack_inputs
            def call(
                self, input_ids=None, past=None, output_attentions=None, output_hidden_states=None, return_dict=None
            ):
                return input_ids, past, output_attentions, output_hidden_states, return_dict

1937
1938
1939
1940
            @unpack_inputs
            def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None):
                return pixel_values, output_attentions, output_hidden_states, return_dict

1941
1942
1943
        dummy_model = DummyModel()
        input_ids = tf.constant([0, 1, 2, 3])
        past = tf.constant([4, 5, 6, 7])
1944
        pixel_values = tf.constant([8, 9, 10, 11])
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

        # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
        output = dummy_model.call(input_ids=input_ids, past=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 2: Same as above, but with positional arguments.
        output = dummy_model.call(input_ids, past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 3: We can also pack everything in the first input.
        output = dummy_model.call(input_ids={"input_ids": input_ids, "past": past})
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 4: Explicit boolean arguments should override the config.
        output = dummy_model.call(input_ids=input_ids, past=past, output_attentions=False, return_dict=True)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertTrue(output[4])

        # test case 5: Unexpected arguments should raise an exception.
        with self.assertRaises(ValueError):
            output = dummy_model.call(input_ids=input_ids, past=past, foo="bar")

        # test case 6: Despite the above, `past_key_values` should be interchangeable with `past`
        # (the decorator moves it to `past`, or vice-versa, depending on the signature).
        output = dummy_model.call(input_ids=input_ids, past_key_values=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

1991
1992
1993
1994
1995
1996
1997
1998
        # test case 7: the decorator is independent from `main_input_name` -- it treats the first argument of the
        # decorated function as its main input.
        output = dummy_model.foo(pixel_values=pixel_values)
        tf.debugging.assert_equal(output[0], pixel_values)
        self.assertFalse(output[1])
        self.assertFalse(output[2])
        self.assertFalse(output[3])

Joao Gante's avatar
Joao Gante committed
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
    # Tests whether the stable softmax is stable on CPU, with and without XLA
    def test_xla_stable_softmax(self):
        large_penalty = -1e9
        n_tokens = 10
        batch_size = 8

        def masked_softmax(x, boolean_mask):
            numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
            masked_x = x + numerical_mask
            return stable_softmax(masked_x)

        xla_masked_softmax = tf.function(masked_softmax, jit_compile=True)
        xla_stable_softmax = tf.function(stable_softmax, jit_compile=True)
        x = tf.random.normal((batch_size, n_tokens))

        # Same outcome regardless of the boolean mask here
        masked_tokens = random.randint(0, n_tokens)
        boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32)

        # We can randomly mask a random numerical input OUTSIDE XLA
        numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
        masked_x = x + numerical_mask
        xla_out = xla_stable_softmax(masked_x)
        out = stable_softmax(masked_x)
        assert tf.experimental.numpy.allclose(xla_out, out)

        # The stable softmax has the same output as the original softmax
        unstable_out = tf.nn.softmax(masked_x)
        assert tf.experimental.numpy.allclose(unstable_out, out)

        # We can randomly mask a random numerical input INSIDE XLA
        xla_out = xla_masked_softmax(x, boolean_mask)
        out = masked_softmax(x, boolean_mask)
        assert tf.experimental.numpy.allclose(xla_out, out)

Arthur's avatar
Arthur committed
2034
2035
2036
2037
2038
2039
2040
    def test_checkpoint_sharding_from_hub(self):
        model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.weights, ref_model.weights):
            assert np.allclose(p1.numpy(), p2.numpy())

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
    @is_pt_tf_cross_test
    def test_checkpoint_sharding_local_from_pt(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded")
            model = TFBertModel.from_pretrained(tmp_dir, from_pt=True)
            # the model above is the same as the model below, just a sharded pytorch version.
            ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            for p1, p2 in zip(model.weights, ref_model.weights):
                assert np.allclose(p1.numpy(), p2.numpy())

Arthur's avatar
Arthur committed
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = tf.keras.Sequential(
            [
                tf.keras.layers.Dense(200, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(200, use_bias=False),  # size 160,000
                tf.keras.layers.Dense(100, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(50, use_bias=False),  # size 20,000
            ]
        )
        inputs = tf.zeros((1, 100), dtype=tf.float32)
        model(inputs)
        weights = model.weights
        weights_dict = {w.name: w for w in weights}
        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = tf_shard_checkpoint(weights)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_1/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_2/kernel:0": "tf_model-00002-of-00002.h5",
                        "dense_3/kernel:0": "tf_model-00002-of-00002.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]]
            shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2})

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00003.h5",
                        "dense_1/kernel:0": "tf_model-00002-of-00003.h5",
                        "dense_2/kernel:0": "tf_model-00003-of-00003.h5",
                        "dense_3/kernel:0": "tf_model-00003-of-00003.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"]]
            shard2 = [weights_dict["dense_1/kernel:0"]]
            shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(
                shards,
                {
                    "tf_model-00001-of-00003.h5": shard1,
                    "tf_model-00002-of-00003.h5": shard2,
                    "tf_model-00003-of-00003.h5": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".h5"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        with h5py.File(shard_file, "r") as state_file:
                            self.assertEqual(len(state_file), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".h5"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = TFBertModel.from_pretrained(tmp_dir)

                model(model.dummy_inputs)
                new_model(model.dummy_inputs)

                for p1, p2 in zip(model.weights, new_model.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
    def test_generate_tf_function_export(self):
        test_model = TFAutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")
        max_length = 8

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
                    tf.TensorSpec((None, max_length), tf.int32, name="input_ids"),
                    tf.TensorSpec((None, max_length), tf.int32, name="attention_mask"),
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_length,
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2, 3, 4, 1, 0, 0, 0, 0], [102, 103, 104, 105, 1, 0, 0, 0]]
        dummy_attention_masks = [[1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for batch_size in range(1, len(dummy_input_ids) + 1):
                inputs = {
                    "input_ids": tf.constant(dummy_input_ids[:batch_size]),
                    "attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_length)
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)

Sylvain Gugger's avatar
Sylvain Gugger committed
2207
2208
2209
2210
2211
2212

@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2213
2214
2215
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2216
2217
2218
2219

    @classmethod
    def tearDownClass(cls):
        try:
2220
            delete_repo(token=cls._token, repo_id="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
2221
2222
2223
2224
        except HTTPError:
            pass

        try:
2225
            delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
        logging.set_verbosity_info()
        logger = logging.get_logger("transformers.utils.hub")
        with CaptureLogger(logger) as cl:
            model.push_to_hub("test-model-tf", use_auth_token=self._token)
        logging.set_verbosity_warning()
        # Check the model card was created and uploaded.
        self.assertIn("Uploading README.md to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out)

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model-tf")

        # Push to hub via save_pretrained
Matt's avatar
Matt committed
2256
        with tempfile.TemporaryDirectory() as tmp_dir:
2257
2258
2259
2260
2261
2262
2263
2264
            model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)
Matt's avatar
Matt committed
2265

Sylvain Gugger's avatar
Sylvain Gugger committed
2266
2267
2268
2269
2270
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

        model.push_to_hub("valid_org/test-model-tf-org", use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
2287
2288
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2289
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-tf-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
2290
2291
            )

2292
2293
2294
2295
2296
2297
        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)