test_modeling_tf_common.py 87.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
import unittest.mock as mock
25
from importlib import import_module
26
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
27

28
29
from datasets import Dataset

30
from huggingface_hub import delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
31
from requests.exceptions import HTTPError
32
from transformers import is_tf_available, is_torch_available
33
from transformers.configuration_utils import PretrainedConfig
34
from transformers.models.auto import get_values
35
from transformers.testing_utils import tooslow  # noqa: F401
Lysandre Debut's avatar
Lysandre Debut committed
36
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
    PASS,
    USER,
39
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
40
41
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
42
    is_staging_test,
Lysandre Debut's avatar
Lysandre Debut committed
43
    require_tf,
44
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
45
    slow,
46
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
47
)
48
from transformers.utils import logging
49
from transformers.utils.generic import ModelOutput
50

Aymeric Augustin's avatar
Aymeric Augustin committed
51

52
53
54
logger = logging.get_logger(__name__)


55
if is_tf_available():
thomwolf's avatar
thomwolf committed
56
    import numpy as np
57
    import tensorflow as tf
58

59
    from transformers import (
60
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
61
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
62
        TF_MODEL_FOR_MASKED_LM_MAPPING,
63
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
64
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
65
        TF_MODEL_FOR_PRETRAINING_MAPPING,
66
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
67
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
68
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
69
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
70
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
        BertConfig,
72
        TFAutoModel,
73
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
        TFBertModel,
75
76
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
77
    )
78
79
80
81
82
83
84
85
86
87
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
88
    from transformers.modeling_tf_utils import unpack_inputs
Joao Gante's avatar
Joao Gante committed
89
    from transformers.tf_utils import stable_softmax
90

Julien Chaumond's avatar
Julien Chaumond committed
91
92
93
94
95
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
96
97
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
98
                )
Julien Plu's avatar
Julien Plu committed
99
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
100
101
102
103
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
104

105
106
107
if is_torch_available():
    import torch

108

thomwolf's avatar
thomwolf committed
109
110
111
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
112
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
113
114
115
116
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


117
118
@require_tf
class TFModelTesterMixin:
119

120
121
    model_tester = None
    all_model_classes = ()
122
    all_generative_model_classes = ()
123
    test_mismatched_shapes = True
124
    test_resize_embeddings = True
125
    test_head_masking = True
126
    is_encoder_decoder = False
127
    has_attentions = True
128

Lysandre Debut's avatar
Lysandre Debut committed
129
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
130
131
        inputs_dict = copy.deepcopy(inputs_dict)

132
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
133
            inputs_dict = {
134
135
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
136
137
138
                else v
                for k, v in inputs_dict.items()
            }
139
140

        if return_labels:
141
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
142
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
143
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
144
145
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
146
147
148
149
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
150
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
151
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
152
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
153
            elif model_class in [
154
155
156
157
158
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
159
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
160
161
162
163
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
164
165
        return inputs_dict

166
167
    def test_initialization(self):
        pass
168

169
170
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
171

172
173
        for model_class in self.all_model_classes:
            model = model_class(config)
174
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
175

176
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
177
                model.save_pretrained(tmpdirname, saved_model=False)
178
                model = model_class.from_pretrained(tmpdirname)
179
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
180

181
                self.assert_outputs_same(after_outputs, outputs)
182

183
184
185
186
187
188
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
189
190
191
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
192
            new_model = model_class.from_config(model.get_config())
193
194
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
195
196
197
198
199
200
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

201
202
203
204
205
206
207
208
209
210
211
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
212
                    "input_ids",
213
214
215
216
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
217
                expected_arg_names.extend(
218
219
220
221
222
223
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                # Necessary to handle BART with newly added cross_attn_head_mask
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
224
225
226
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
227
228

            else:
Julien Plu's avatar
Julien Plu committed
229
                expected_arg_names = ["input_ids"]
230
231
                self.assertListEqual(arg_names[:1], expected_arg_names)

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

274
    @require_tf2onnx
275
276
277
278
279
280
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
281
        import tf2onnx
282
283
284
285
286
287
288

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

289
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
290

291
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
292

293
294
295
296
297
298
299
300
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
301
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
302
303
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
304
            for module_member in (getattr(module, module_member_name),)
305
306
307
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
308
309
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
310
311
312
313
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
314
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
315
316
317
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
318

319
320
321
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
322

323
324
325
326
327
328
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
329
330
331
332
333
334
335
336
337
338
339
340
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
341
342
343
344
345
346
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
347
348
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
349
        elif isinstance(after_outputs, dict):
350
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
351
352
        else:
            out_1 = after_outputs[0].numpy()
353
        out_2 = outputs[0].numpy()
354
        self.assertEqual(out_1.shape, out_2.shape)
355
356
357
358
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
359

360
361
362
363
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
364

365
366
367
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
thomwolf's avatar
thomwolf committed
368

369
370
371
372
373
374
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
            "TFTransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
        """Check the outputs from PyTorch and TensorFlow models are closed enough. Checks are done in a recursive way.

        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
445

446
447
448
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
449

450
451
            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
452

453
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
454

455
456
457
458
459
460
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
                )
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
477

478
479
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
480

481
482
483
484
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
485

486
487
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
488

489
490
491
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
492

493
494
495
496
497
498
499
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])

            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
500

501
502
503
504
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
505

506
507
508
509
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
510
511
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
512
            )
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):

        pt_inputs_dict = {}
        for name, key in tf_inputs_dict.items():
            if type(key) == bool:
                pt_inputs_dict[name] = key
            elif name == "input_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "pixel_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "input_features":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            # other general float inputs
            elif tf_inputs_dict[name].dtype.is_floating:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            else:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

        return pt_inputs_dict

    def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):

        pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)

        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }

        # send pytorch model to the correct device
        pt_model.to(torch_device)

        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
565
566
567
568

        for model_class in self.all_model_classes:

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
569

570
571
            # Output all for aggressive testing
            config.output_hidden_states = True
572
            config.output_attentions = self.has_attentions
573

574
575
576
577
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
578
579
580
581
582
583

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
584

585
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
586
            tf_inputs_dict_with_labels = self._prepare_for_class(
587
588
589
590
591
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
592

593
594
595
596
597
            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
                tf_inputs_dict_with_labels = None

598
599
600
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
Lysandre's avatar
Lysandre committed
601

602
603
604
605
606
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
607
608

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
609
            with tempfile.TemporaryDirectory() as tmpdirname:
610
611
612
613
614
615
616
617
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

618
619
620
621
622
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
623
624
625

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
626
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
627
628
629
630
631
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
650
                inputs = {
651
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
652
653
654
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
655
                    ),
Julien Plu's avatar
Julien Plu committed
656
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
657
                }
Sayak Paul's avatar
Sayak Paul committed
658
659
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
660
661
662
663
664
665
666
667
668
669
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
684
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
685
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
686
            else:
Yih-Dar's avatar
Yih-Dar committed
687
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
688

689
690
            # Prepare our model
            model = model_class(config)
691
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
692
            # Let's load it from the disk to be sure we can use pretrained weights
693
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
694
                model.save_pretrained(tmpdirname, saved_model=False)
695
696
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
697
            outputs_dict = model(inputs)
698
699
            hidden_states = outputs_dict[0]

700
            # Add a dense layer on top to test integration with other keras modules
701
702
703
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
704
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
705
706
707
708
709
710
711
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
712
713
714
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
715

716
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
717
            outputs_keywords = model(**inputs_keywords)
718
719
720
721
722
723
724
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
725
        config.return_dict = True
726
727
728
729
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
730

Julien Plu's avatar
Julien Plu committed
731
732
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
733
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
734
735
736
737
738
739
740
741
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
742
743
744
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
745
746
747
748
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
749
            )
Julien Plu's avatar
Julien Plu committed
750
751
752
753
754
755

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
756
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
757
758
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
759

760
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
761
762
763
764
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
765

766
767
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
768
            config.output_attentions = True
769
            model = model_class(config)
770
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
771
772
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
773
774
775

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
776
777
            config.output_hidden_states = True
            model = model_class(config)
778
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
779

780
781
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
782
            check_encoder_attentions_output(outputs)
783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
826
827
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
852
853
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
854
855
856
            else:
                check_attentions_validity(outputs.attentions)

857
858
859
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
860
        def check_hidden_states_output(config, inputs_dict, model_class):
861
            model = model_class(config)
862
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
863
864
865
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
866

Julien Plu's avatar
Julien Plu committed
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
890

Joseph Liu's avatar
Joseph Liu committed
891
892
893
894
895
896
897
898
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

899
900
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
901
        text_in_text_out_models = (
902
903
904
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
905
        )
Joao Gante's avatar
Joao Gante committed
906
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
907
908
909

        for model_class in self.all_model_classes:
            model = model_class(config)
910
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
911
            if model_class in text_in_text_out_models:
912
                x = model.get_output_embeddings()
913
                assert isinstance(x, tf.keras.layers.Layer)
914
915
916
917
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
918
919
920
921
922
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
923
            else:
924
                x = model.get_output_embeddings()
925
                assert x is None
926
927
                name = model.get_bias()
                assert name is None
928
929
930
931
932
933

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
934
            first, second = (
935
936
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
937
            )
938
939
940
941
942
943
944
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
Sylvain Gugger's avatar
Sylvain Gugger committed
962
963
964
965
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

985
986
987
988
989
            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)
990

991
992
993
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
994

995
996
997
998
999
1000
1001
1002
1003
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1004

1005
1006
1007
1008
1009
1010
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

1011
1012
            inputs = copy.deepcopy(inputs_dict)

1013
1014
1015
1016
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
1017
                encoder_input_ids = inputs["input_ids"]
1018
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
1019
                del inputs["input_ids"]
1020
1021
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
1022
            if not self.is_encoder_decoder:
1023
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
1024
            else:
1025
1026
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
1027

1028
1029
            inputs = self._prepare_for_class(inputs, model_class)

1030
            model(inputs)
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1051
1052
1053
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1054

1055
1056
1057
1058
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1059
1060

        def _get_word_embedding_weight(model, embedding_layer):
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1080

1081
1082
1083
1084
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1085
1086
1087
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1088
                # reshape the embeddings
1089
1090
1091
1092
1093
1094
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1095
                assert_size = size if size is not None else config.vocab_size
1096
1097
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1098
1099
                # check that weights remain the same after resizing
                models_equal = True
1100
1101
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1102
1103
1104
                        models_equal = False
                self.assertTrue(models_equal)

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1125
    def test_lm_head_model_random_no_beam_search_generate(self):
1126
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1127
        input_ids = inputs_dict.get("input_ids", None)
1128

1129
        # iterate over all generative models
1130
1131
1132
1133
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1134
                # if bos token id is not defined model needs input_ids
1135
                with self.assertRaises(ValueError):
1136
                    model.generate(do_sample=True, max_length=5)
1137
                # num_return_sequences = 1
1138
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1139
1140
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1141
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1142

1143
            with self.assertRaises(ValueError):
1144
                # generating multiple sequences when no beam search generation
1145
1146
1147
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1148
1149
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1150
1151

            # check bad words tokens language generation
1152
1153
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1154
            output_tokens = model.generate(
1155
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1156
            )
1157
            # only count generated tokens
1158
1159
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1160

1161
1162
1163
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1164
1165
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1194
1195
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1196
        input_ids = inputs_dict.get("input_ids", None)
1197
1198
1199
1200
1201

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1202
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1203
1204
1205
1206
1207
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

1208
            with self.assertRaises(ValueError):
1209
1210
1211
1212
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1213
1214
1215
1216
1217
1218
1219
1220
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1221
1222
1223
1224
1225
1226
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1227
            output_tokens = model.generate(
1228
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1229
            )
1230
            # only count generated tokens
1231
1232
1233
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1234
1235
1236
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1237
1238
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1269
1270
1271
1272
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1273
            if getattr(model, "hf_compute_loss", None):
1274
1275
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1276
1277
1278
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1279
1280
                loss_size = tf.size(added_label)

1281
                if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
1282
1283
1284
1285
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1286
1287
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Joao Gante's avatar
Joao Gante committed
1288
1289
1290
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
1291

Joao Gante's avatar
Joao Gante committed
1292
                loss = model(model_input, **prepared_for_class)[0]
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1305
1306
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1307
1308

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1309
                tuple_index_mapping = {0: input_name}
1310
                for label_key in label_keys:
1311
                    label_key_index = signature_names.index(label_key)
1312
1313
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1314
1315
1316
1317
1318
1319
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1320
1321

                for index, value in sorted_tuple_index_mapping:
1322
1323
                    list_input[index] = prepared_for_class[value]

1324
1325
1326
                tuple_input = tuple(list_input)

                # Send to model
1327
1328
                loss = model(tuple_input[:-1])[0]

1329
1330
                self.assertEqual(loss.shape, [loss_size])

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                # Is there a better way to remove these decoder inputs?
                prepared_for_class = {
                    key: val
                    for key, val in prepared_for_class.items()
                    if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "decoder_input_ids")
                }

                possible_label_cols = {
                    "labels",
                    "label",
                    "label_ids",
                    "start_positions",
                    "start_position",
                    "end_positions",
                    "end_position",
                    "next_sentence_label",
                }
                label_names = possible_label_cols.intersection(set(prepared_for_class))
                self.assertGreater(len(label_names), 0, msg="No matching label names found!")
                labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
                inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
                self.assertGreater(len(inputs_minus_labels), 0)
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
                accuracy_classes = [
                    "ForPreTraining",
                    "ForCausalLM",
                    "ForMaskedLM",
                    "ForQuestionAnswering",
                    "ForMultipleChoice",
                    "ForSequenceClassification",
                    "ForTokenClassification",
                    "ForNextSentencePrediction",
                    "LMHeadModel",
                ]
                for accuracy_class in accuracy_classes:
                    if model.__class__.__name__.endswith(accuracy_class):
                        metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
                        break
                else:
                    metrics = []

                model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
1379
1380
1381
1382
1383
1384
1385
1386
1387
                # Make sure the model fits without crashing regardless of where we pass the labels
                history1 = model.fit(
                    prepared_for_class,
                    validation_data=prepared_for_class,
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss1 = history1.history["val_loss"][0]
1388
                accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}
1389
1390
1391
1392
1393
1394
1395
1396
1397
                history2 = model.fit(
                    inputs_minus_labels,
                    labels,
                    validation_data=(inputs_minus_labels, labels),
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss2 = history2.history["val_loss"][0]
1398
                accuracy2 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}
1399
                self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3))
1400
1401
1402
1403
1404
1405
                self.assertEqual(history1.history.keys(), history2.history.keys())
                for key in history1.history.keys():
                    if not key.startswith("val_"):
                        self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
                if metrics:
                    self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")
1406

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
    def test_int64_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
                [tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)]
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1461
    def test_load_with_mismatched_shapes(self):
1462
1463
        if not self.test_mismatched_shapes:
            return
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1480
1481
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1507
1508
1509
1510
1511
1512
1513
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
            else:
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
                    model(test_batch, training=False)

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)

1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1582
    def _check_generated_ids(self, output_ids):
1583
1584
1585
1586
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1599

thomwolf's avatar
thomwolf committed
1600
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1613
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1614
1615

    return output
1616
1617


Yih-Dar's avatar
Yih-Dar committed
1618
1619
1620
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
1621
    attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
Yih-Dar's avatar
Yih-Dar committed
1622
1623
1624
    return attn_mask


1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1717
1718
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1730
1731
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1732
1733
1734
1735
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1736

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    # tests whether the unpack_inputs function behaves as expected
    def test_unpack_inputs(self):
        class DummyModel:
            def __init__(self):
                config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
                self.config = PretrainedConfig(**config_kwargs)

            @unpack_inputs
            def call(
                self, input_ids=None, past=None, output_attentions=None, output_hidden_states=None, return_dict=None
            ):
                return input_ids, past, output_attentions, output_hidden_states, return_dict

        dummy_model = DummyModel()
        input_ids = tf.constant([0, 1, 2, 3])
        past = tf.constant([4, 5, 6, 7])

        # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
        output = dummy_model.call(input_ids=input_ids, past=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 2: Same as above, but with positional arguments.
        output = dummy_model.call(input_ids, past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 3: We can also pack everything in the first input.
        output = dummy_model.call(input_ids={"input_ids": input_ids, "past": past})
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 4: Explicit boolean arguments should override the config.
        output = dummy_model.call(input_ids=input_ids, past=past, output_attentions=False, return_dict=True)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertTrue(output[4])

        # test case 5: Unexpected arguments should raise an exception.
        with self.assertRaises(ValueError):
            output = dummy_model.call(input_ids=input_ids, past=past, foo="bar")

        # test case 6: Despite the above, `past_key_values` should be interchangeable with `past`
        # (the decorator moves it to `past`, or vice-versa, depending on the signature).
        output = dummy_model.call(input_ids=input_ids, past_key_values=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

Joao Gante's avatar
Joao Gante committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    # Tests whether the stable softmax is stable on CPU, with and without XLA
    def test_xla_stable_softmax(self):
        large_penalty = -1e9
        n_tokens = 10
        batch_size = 8

        def masked_softmax(x, boolean_mask):
            numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
            masked_x = x + numerical_mask
            return stable_softmax(masked_x)

        xla_masked_softmax = tf.function(masked_softmax, jit_compile=True)
        xla_stable_softmax = tf.function(stable_softmax, jit_compile=True)
        x = tf.random.normal((batch_size, n_tokens))

        # Same outcome regardless of the boolean mask here
        masked_tokens = random.randint(0, n_tokens)
        boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32)

        # We can randomly mask a random numerical input OUTSIDE XLA
        numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
        masked_x = x + numerical_mask
        xla_out = xla_stable_softmax(masked_x)
        out = stable_softmax(masked_x)
        assert tf.experimental.numpy.allclose(xla_out, out)

        # The stable softmax has the same output as the original softmax
        unstable_out = tf.nn.softmax(masked_x)
        assert tf.experimental.numpy.allclose(unstable_out, out)

        # We can randomly mask a random numerical input INSIDE XLA
        xla_out = xla_masked_softmax(x, boolean_mask)
        out = masked_softmax(x, boolean_mask)
        assert tf.experimental.numpy.allclose(xla_out, out)

Sylvain Gugger's avatar
Sylvain Gugger committed
1850
1851
1852
1853
1854
1855

@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1856
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1857
1858
1859
1860

    @classmethod
    def tearDownClass(cls):
        try:
1861
            delete_repo(token=cls._token, name="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1862
1863
1864
1865
        except HTTPError:
            pass

        try:
1866
            delete_repo(token=cls._token, name="test-model-tf-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)
        with tempfile.TemporaryDirectory() as tmp_dir:
1878
            model.save_pretrained(os.path.join(tmp_dir, "test-model-tf"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1879

1880
            new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1881
1882
1883
1884
1885
1886
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)

Matt's avatar
Matt committed
1887
1888
1889
1890
1891
1892
1893
1894
1895
    def test_push_to_hub_with_model_card(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.push_to_hub(os.path.join(tmp_dir, "test-model-tf"))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "test-model-card-tf", "README.md")))

Sylvain Gugger's avatar
Sylvain Gugger committed
1896
1897
1898
1899
1900
1901
1902
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1903
                os.path.join(tmp_dir, "test-model-tf-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
1904
1905
1906
1907
1908
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

1909
            new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1910
1911
1912
1913
1914
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)