run_glue.py 24.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19


import argparse
thomwolf's avatar
thomwolf committed
20
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import json
thomwolf's avatar
thomwolf committed
22
23
24
import logging
import os
import random
25
26
from dataclasses import dataclass, field
from typing import Optional
thomwolf's avatar
thomwolf committed
27
28
29

import numpy as np
import torch
30
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
thomwolf's avatar
thomwolf committed
31
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

34
from transformers import (
35
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
36
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
37
    AdamW,
38
39
40
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
41
42
    HfArgumentParser,
    TrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
43
    get_linear_schedule_with_warmup,
44
)
45
from transformers import glue_compute_metrics as compute_metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
46
from transformers import glue_convert_examples_to_features as convert_examples_to_features
47
48
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50
51
52


try:
    from torch.utils.tensorboard import SummaryWriter
53
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
54
55
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
56
57
58

logger = logging.getLogger(__name__)

59
60
MODEL_CONFIG_CLASSES = list(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
61

62
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), (),)
thomwolf's avatar
thomwolf committed
63

thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
71
72

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
73
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
74
75
76
77
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
78
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
79
80
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
81

thomwolf's avatar
thomwolf committed
82
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
83
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
84
85
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
86
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
87

thomwolf's avatar
thomwolf committed
88
    # Prepare optimizer and schedule (linear warmup and decay)
89
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
90
    optimizer_grouped_parameters = [
91
92
93
94
95
96
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Lysandre's avatar
Lysandre committed
97

thomwolf's avatar
thomwolf committed
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
99
100
101
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
102
103

    # Check if saved optimizer or scheduler states exist
104
105
106
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
107
        # Load in optimizer and scheduler states
108
109
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
110

thomwolf's avatar
thomwolf committed
111
112
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
113
            from apex import amp
thomwolf's avatar
thomwolf committed
114
115
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
116
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
117

118
119
120
121
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
122
123
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
124
        model = torch.nn.parallel.DistributedDataParallel(
125
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
126
        )
thomwolf's avatar
thomwolf committed
127

thomwolf's avatar
thomwolf committed
128
129
    # Train!
    logger.info("***** Running training *****")
130
131
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
132
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
133
134
135
136
137
138
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
139
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
140
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
141
142

    global_step = 0
143
144
145
146
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
147
148
149
150
151
        # set global_step to global_step of last saved checkpoint from model path
        try:
            global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
152
153
154
155
156
157
158
159
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
160
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
161
    model.zero_grad()
162
    train_iterator = trange(
163
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
164
    )
165
    set_seed(args)  # Added here for reproductibility
thomwolf's avatar
thomwolf committed
166
167
168
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
169
170
171
172
173
174

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
175
            model.train()
thomwolf's avatar
thomwolf committed
176
            batch = tuple(t.to(args.device) for t in batch)
177
178
179
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
180
181
                    batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
182
            outputs = model(**inputs)
183
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
184
185

            if args.n_gpu > 1:
186
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
thomwolf's avatar
thomwolf committed
187
188
189
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
190
191
192
193
194
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
195
196

            tr_loss += loss.item()
197
198
199
200
201
            if (step + 1) % args.gradient_accumulation_steps == 0 or (
                # last step in epoch but step is always smaller than gradient_accumulation_steps
                len(epoch_iterator) <= args.gradient_accumulation_steps
                and (step + 1) == len(epoch_iterator)
            ):
202
203
204
205
206
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
207
                optimizer.step()
thomwolf's avatar
thomwolf committed
208
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
209
                model.zero_grad()
thomwolf's avatar
thomwolf committed
210
                global_step += 1
thomwolf's avatar
thomwolf committed
211

thomwolf's avatar
thomwolf committed
212
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
213
                    logs = {}
214
215
216
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
217
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
218
                        for key, value in results.items():
219
                            eval_key = "eval_{}".format(key)
Juha Kiili's avatar
Juha Kiili committed
220
221
                            logs[eval_key] = value

222
223
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
224
225
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
thomwolf's avatar
thomwolf committed
226
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
227

Juha Kiili's avatar
Juha Kiili committed
228
229
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
230
                    print(json.dumps({**logs, **{"step": global_step}}))
thomwolf's avatar
thomwolf committed
231
232
233

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
234
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
thomwolf's avatar
thomwolf committed
235
236
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
237
238
239
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
240
                    model_to_save.save_pretrained(output_dir)
241
242
                    tokenizer.save_pretrained(output_dir)

243
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
244
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
245

246
247
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
248
249
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
250
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
251
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
252
253
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
254
            train_iterator.close()
thomwolf's avatar
thomwolf committed
255
            break
thomwolf's avatar
thomwolf committed
256

thomwolf's avatar
thomwolf committed
257
258
259
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
260
261
262
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
263
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
264
265
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
266
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
274

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
275
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
276
        # Note that DistributedSampler samples randomly
277
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
278
279
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
280
        # multi-gpu eval
281
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
282
283
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
284
        # Eval!
thomwolf's avatar
thomwolf committed
285
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
286
287
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
288
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
289
290
291
292
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
293
            model.eval()
thomwolf's avatar
thomwolf committed
294
295
296
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
297
298
299
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
300
301
                        batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                    )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
302
303
304
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
305
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
306
307
308
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
309
                out_label_ids = inputs["labels"].detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
310
311
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
312
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
313
314
315
316
317
318
319
320
321

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

322
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
323
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
324
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
331
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
332
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
333
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
334
335
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
336
    processor = processors[task]()
337
338
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
339
340
341
342
343
344
345
346
347
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
348
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
349
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
350
351
        features = torch.load(cached_features_file)
    else:
352
353
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
354
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
355
            # HACK(label indices are swapped in RoBERTa pretrained model)
356
            label_list[1], label_list[2] = label_list[2], label_list[1]
357
358
359
360
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
361
            examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode,
362
        )
363
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
364
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
365
366
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
367
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
368
369
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

370
371
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
372
373
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
374
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
375
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
376
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
377
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
378

thomwolf's avatar
thomwolf committed
379
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
380
    return dataset
thomwolf's avatar
thomwolf committed
381
382


383
384
385
386
387
388
389
390
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)}
391
    )
392
393
394
    model_type: str = field(metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)})
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
395
    )
396
397
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
398
    )
399
400
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pre-trained models downloaded from s3"}
401
    )
thomwolf's avatar
thomwolf committed
402

403
404
405
406
407

@dataclass
class DataProcessingArguments:
    task_name: str = field(
        metadata={"help": "The name of the task to train selected in the list: " + ", ".join(processors.keys())}
408
    )
409
410
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
411
    )
412
    max_seq_length: int = field(
413
        default=128,
414
415
416
417
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
418
    )
419
420
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
421
422
423
    )


424
425
426
427
428
429
430
def main():
    parser = HfArgumentParser((ModelArguments, DataProcessingArguments, TrainingArguments))
    model_args, dataprocessing_args, training_args = parser.parse_args_into_dataclasses()

    # For now, let's merge all the sets of args into one,
    # but soon, we'll keep distinct sets of args, with a cleaner separation of concerns.
    args = argparse.Namespace(**vars(model_args), **vars(dataprocessing_args), **vars(training_args))
thomwolf's avatar
thomwolf committed
431

432
433
434
435
436
437
438
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
439
            f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
440
        )
thomwolf's avatar
thomwolf committed
441

thomwolf's avatar
thomwolf committed
442
443
444
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
445
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
446
447
448
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
449
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
450
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
451
452
453
    args.device = device

    # Setup logging
454
455
456
457
458
459
460
461
462
463
464
465
466
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
thomwolf's avatar
thomwolf committed
467

thomwolf's avatar
thomwolf committed
468
469
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
470
471

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
472
473
474
475
476
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
477
478
479
480
481
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
482
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
483

484
    args.model_type = args.model_type.lower()
485
    config = AutoConfig.from_pretrained(
486
487
488
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
489
        cache_dir=args.cache_dir,
490
    )
491
    tokenizer = AutoTokenizer.from_pretrained(
492
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir,
493
    )
494
    model = AutoModelForSequenceClassification.from_pretrained(
495
496
497
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
498
        cache_dir=args.cache_dir,
499
    )
thomwolf's avatar
thomwolf committed
500
501

    if args.local_rank == 0:
502
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
503

thomwolf's avatar
thomwolf committed
504
    model.to(args.device)
thomwolf's avatar
thomwolf committed
505

thomwolf's avatar
thomwolf committed
506
507
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
508
    # Training
thomwolf's avatar
thomwolf committed
509
    if args.do_train:
510
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
511
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
512
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
513

thomwolf's avatar
thomwolf committed
514
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
515
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
516
517
518
519
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
520
        logger.info("Saving model checkpoint to %s", args.output_dir)
521
522
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
523
524
525
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
526
        model_to_save.save_pretrained(args.output_dir)
527
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
528
529

        # Good practice: save your training arguments together with the trained model
530
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
531

532
        # Load a trained model and vocabulary that you have fine-tuned
533
534
        model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
535
        model.to(args.device)
thomwolf's avatar
thomwolf committed
536

thomwolf's avatar
thomwolf committed
537
    # Evaluation
thomwolf's avatar
thomwolf committed
538
    results = {}
thomwolf's avatar
thomwolf committed
539
    if args.do_eval and args.local_rank in [-1, 0]:
540
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
541
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
542
        if args.eval_all_checkpoints:
543
544
545
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
546
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
547
548
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
549
550
551
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

552
            model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
553
            model.to(args.device)
554
            result = evaluate(args, model, tokenizer, prefix=prefix)
555
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
thomwolf's avatar
thomwolf committed
556
557
            results.update(result)

thomwolf's avatar
thomwolf committed
558
    return results
thomwolf's avatar
thomwolf committed
559
560
561
562


if __name__ == "__main__":
    main()