"lmdeploy/serve/fastertransformer/deploy.py" did not exist on "cc93136e6a166566fc6f0502c67aa99a94673db3"
run_glue.py 26.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

34
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
35
                                  BertForSequenceClassification, BertTokenizer,
36
37
38
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
39
40
41
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
42
43
44
45
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
46

47
from transformers import AdamW, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
48

49
50
51
52
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
53
54
55

logger = logging.getLogger(__name__)

56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
57
58

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
59
60
61
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
62
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
63
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
64
}
thomwolf's avatar
thomwolf committed
65

thomwolf's avatar
thomwolf committed
66
67
68
69
70
71
72
73
74

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
75
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
76
77
78
79
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
80
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
81
82
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
83

thomwolf's avatar
thomwolf committed
84
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
85
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
86
87
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
88
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
89

thomwolf's avatar
thomwolf committed
90
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
91
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
92
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
93
94
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
95
        ]
thomwolf's avatar
thomwolf committed
96
97
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
98
99
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
100
            from apex import amp
thomwolf's avatar
thomwolf committed
101
102
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
103
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
104

105
106
107
108
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
115
116
    # Train!
    logger.info("***** Running training *****")
117
118
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
119
120
121
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
122
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
123
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
124
125

    global_step = 0
thomwolf's avatar
thomwolf committed
126
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
127
    model.zero_grad()
thomwolf's avatar
thomwolf committed
128
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
129
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
130
131
132
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
133
            model.train()
thomwolf's avatar
thomwolf committed
134
            batch = tuple(t.to(args.device) for t in batch)
135
136
137
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
138
139
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
140
            outputs = model(**inputs)
141
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
142
143
144
145
146
147

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
148
149
150
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
151
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
152
153
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
154
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
155
156
157
158

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
thomwolf's avatar
thomwolf committed
159
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
160
                model.zero_grad()
thomwolf's avatar
thomwolf committed
161
                global_step += 1
thomwolf's avatar
thomwolf committed
162

thomwolf's avatar
thomwolf committed
163
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
164
                    # Log metrics
thomwolf's avatar
thomwolf committed
165
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
166
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
167
168
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
169
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
170
171
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
179
180

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
181
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
182

thomwolf's avatar
thomwolf committed
183
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
184
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
185
186
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
187
            train_iterator.close()
thomwolf's avatar
thomwolf committed
188
            break
thomwolf's avatar
thomwolf committed
189

thomwolf's avatar
thomwolf committed
190
191
192
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
193
194
195
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
196
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
197
198
199
200
201
202
203
204
205
206
207
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
208
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
209
210
211
212
213
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
214
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
215
216
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
217
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
218
219
220
221
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
222
            model.eval()
thomwolf's avatar
thomwolf committed
223
224
225
226
227
228
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
229
230
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
231
232
233
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
234
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
253
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
261
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
262
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
263
264
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
265
    processor = processors[task]()
266
267
268
269
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
270
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
271
272
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
273
    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
274
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
275
276
        features = torch.load(cached_features_file)
    else:
277
278
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
279
280
281
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
282
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
283
284
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
285
286
287
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
288
289
290
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
291
        )
292
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
293
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
294
295
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
296
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
297
298
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

299
300
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
301
302
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
303
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
304
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
305
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
306
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
307

thomwolf's avatar
thomwolf committed
308
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
309
    return dataset
thomwolf's avatar
thomwolf committed
310
311


thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
318
319
320
321
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
322
    parser.add_argument("--task_name", default=None, type=str, required=True,
323
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
324
325
326
327
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
328
329
330
331
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
332
333
334
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
335
336
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
337
338
339
340
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
341
342
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
343
344
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
345
346

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
347
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
348
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
349
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
350
351
352
353
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
354
355
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
356
357
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
358
359
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
360
361
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
362
363
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
364
365
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
366

thomwolf's avatar
thomwolf committed
367
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
368
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
369
370
371
372
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
373
374
375
376
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
377
378
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
379
380
381
382
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
383
384
385
386
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
387
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
388
389
390
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
391
392
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
393
394
395
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
406
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
407
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
408
409
410
411
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
412
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
413
414
415
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
416
417
418
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
419
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
420
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
421

thomwolf's avatar
thomwolf committed
422
423
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
424
425

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
426
427
428
429
430
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
431
432
433
434
435
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
436
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
437

438
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
439
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
440
441
442
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
thomwolf's avatar
thomwolf committed
443
444

    if args.local_rank == 0:
445
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
446

thomwolf's avatar
thomwolf committed
447
    model.to(args.device)
thomwolf's avatar
thomwolf committed
448

thomwolf's avatar
thomwolf committed
449
450
    logger.info("Training/evaluation parameters %s", args)

451

thomwolf's avatar
thomwolf committed
452
    # Training
thomwolf's avatar
thomwolf committed
453
    if args.do_train:
454
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
455
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
456
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
457
458


thomwolf's avatar
thomwolf committed
459
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
460
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
461
462
463
464
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
465
        logger.info("Saving model checkpoint to %s", args.output_dir)
466
467
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
468
469
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
470
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
471
472

        # Good practice: save your training arguments together with the trained model
473
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
474

475
        # Load a trained model and vocabulary that you have fine-tuned
476
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
477
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
478
        model.to(args.device)
thomwolf's avatar
thomwolf committed
479

480

thomwolf's avatar
thomwolf committed
481
    # Evaluation
thomwolf's avatar
thomwolf committed
482
    results = {}
thomwolf's avatar
thomwolf committed
483
    if args.do_eval and args.local_rank in [-1, 0]:
484
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
485
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
486
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
487
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
488
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
489
490
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
491
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
492
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
493
494
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
495
496
497
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
498
    return results
thomwolf's avatar
thomwolf committed
499
500
501
502


if __name__ == "__main__":
    main()