run_glue.py 19.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
from tqdm import tqdm, trange

import numpy as np

import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

from tensorboardX import SummaryWriter

from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_transformers.modeling_bert import BertForSequenceClassification
from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule

from utils_glue import processors, output_modes, convert_examples_to_features, compute_metrics


logger = logging.getLogger(__name__)


thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def train(args, train_features, model):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    # Convert in tensors and build dataloader
    all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
    if args.output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
    elif args.output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer, FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                                lr=args.learning_rate,
                                warmup=args.warmup_proportion,
                                t_total=num_train_optimization_steps)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_features))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    global_step = 0
    tr_loss = 0
    model.train()
    for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
            batch = tuple(t.to(args.device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            ouputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
            loss = ouputs[0]

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            loss.backward() if not args.fp16 else optimizer.backward(loss)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used that handles this automatically
                    lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1
                if args.local_rank in [-1, 0]:
                    if not args.fp16:
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', loss.item(), global_step)

    return global_step, tr_loss / global_step


def evalutate(args, eval_task, eval_output_dir, eval_features, model):
    """ Evaluate the model """
    if os.path.exists(eval_output_dir) and os.listdir(eval_output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(eval_output_dir))
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    # Convert in tensors and build dataloader
    all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
    if args.output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
    elif args.output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

    eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation *****")
    logger.info("  Num examples = %d", len(eval_examples))
    logger.info("  Batch size = %d", args.eval_batch_size)
    model.eval()
    eval_loss = 0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)
        input_ids, input_mask, segment_ids, label_ids = batch

        with torch.no_grad():
            outputs = model(input_ids,
                            token_type_ids=segment_ids,
                            attention_mask=input_mask,
                            labels=label_ids)
            tmp_eval_loss, logits = outputs[:2]

        eval_loss += tmp_eval_loss.mean().item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = label_ids.detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, label_ids.detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    if args.output_mode == "classification":
        preds = np.argmax(preds, axis=1)
    elif args.output_mode == "regression":
        preds = np.squeeze(preds)
    result = compute_metrics(eval_task, preds, out_label_ids)

    output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))


def load_and_cache_examples(args, task, tokenizer, eval=False):
    processor = processors[task]()
    output_mode = output_modes[task]
    label_list = processor.get_labels()

    # Load and cache data
    processor = processors[task]()
    examples = processor.get_dev_examples(args.data_dir)
    cached_features_file = os.path.join(args.data_dir, '{}_{}_{}_{}'.format(
        'dev' if eval else 'train',
        list(filter(None, args.bert_model.split('/'))).pop(),
        str(args.max_seq_length),
        str(task)))

    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
216
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
217
218
219
220
        features = torch.load(cached_features_file)
    else:
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode)
        if args.local_rank == -1 or torch.distributed.get_rank() == 0:
thomwolf's avatar
thomwolf committed
221
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
222
223
224
225
226
            torch.save(features, cached_features_file)

    return features


thomwolf's avatar
thomwolf committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name", default=None, type=str, required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size", default=32, type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size", default=8, type=int,
                        help="Total batch size for eval.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale', type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")

    parser.add_argument("--local_rank", type=int, default=-1,
                        help="local_rank for distributed training on gpus")

    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
300
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
301
302
303
304
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
305
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
306
307
308
309
310
    args.device = device

    # Setup logging
    logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
311
        device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
312
313
314
315
316

    # Setup seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
317
    if args.n_gpu > 0:
thomwolf's avatar
thomwolf committed
318
319
320
        torch.cuda.manual_seed_all(args.seed)

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
321
322
323
324
325
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)

    if args.local_rank == 0:
        torch.distributed.barrier()

    # Distributed, parrallel and fp16 model
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
343
    model.to(args.device)
thomwolf's avatar
thomwolf committed
344
345
346
347
348
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
349
    elif args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
350
351
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
352
    # Training
thomwolf's avatar
thomwolf committed
353
    if args.do_train:
thomwolf's avatar
thomwolf committed
354
355
356
        train_features = load_and_cache_examples(args, args.task_name, tokenizer, eval=False)
        global_step, tr_loss = train(args, train_features, model)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
357
358


thomwolf's avatar
thomwolf committed
359
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model)

thomwolf's avatar
thomwolf committed
382
    model.to(args.device)
thomwolf's avatar
thomwolf committed
383

thomwolf's avatar
thomwolf committed
384
    # Evaluation
thomwolf's avatar
thomwolf committed
385
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
thomwolf's avatar
thomwolf committed
386
387
388
389
390
391
392
393
        # Handle MNLI double evaluation
        eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
        eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

        for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
            eval_features = load_and_cache_examples(args, eval_task, tokenizer, eval=True)

            evalutate(args, eval_task, eval_output_dir, eval_features, model)
thomwolf's avatar
thomwolf committed
394
395
396
397


if __name__ == "__main__":
    main()