run_glue.py 29 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19


import argparse
thomwolf's avatar
thomwolf committed
20
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import json
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
import logging
import os
import random

import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
thomwolf's avatar
thomwolf committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
42
43
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
44
45
46
47
48
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50
51
    XLMRobertaConfig,
    XLMRobertaForSequenceClassification,
    XLMRobertaTokenizer,
52
53
54
55
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
56
    get_linear_schedule_with_warmup,
57
)
58
from transformers import glue_compute_metrics as compute_metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
59
from transformers import glue_convert_examples_to_features as convert_examples_to_features
60
61
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
Aymeric Augustin's avatar
Aymeric Augustin committed
62
63
64
65


try:
    from torch.utils.tensorboard import SummaryWriter
66
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
67
68
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
69
70
71

logger = logging.getLogger(__name__)

72
73
74
75
76
77
78
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)
    ),
    (),
)
79
80

MODEL_CLASSES = {
81
82
83
84
85
86
87
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
88
}
thomwolf's avatar
thomwolf committed
89

thomwolf's avatar
thomwolf committed
90
91
92
93
94
95
96
97
98

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
99
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
100
101
102
103
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
104
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
105
106
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
107

thomwolf's avatar
thomwolf committed
108
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
109
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
110
111
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
112
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
113

thomwolf's avatar
thomwolf committed
114
    # Prepare optimizer and schedule (linear warmup and decay)
115
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
116
    optimizer_grouped_parameters = [
117
118
119
120
121
122
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Lysandre's avatar
Lysandre committed
123

thomwolf's avatar
thomwolf committed
124
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
125
126
127
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
128
129

    # Check if saved optimizer or scheduler states exist
130
131
132
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
133
        # Load in optimizer and scheduler states
134
135
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
136

thomwolf's avatar
thomwolf committed
137
138
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
139
            from apex import amp
thomwolf's avatar
thomwolf committed
140
141
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
142
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
143

144
145
146
147
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
148
149
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
150
151
152
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
153

thomwolf's avatar
thomwolf committed
154
155
    # Train!
    logger.info("***** Running training *****")
156
157
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
158
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
159
160
161
162
163
164
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
165
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
166
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
167
168

    global_step = 0
169
170
171
172
173
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
174
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
175
176
177
178
179
180
181
182
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
183
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
184
    model.zero_grad()
185
186
187
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
thomwolf's avatar
thomwolf committed
188
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
189
190
191
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
192
193
194
195
196
197

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
198
            model.train()
thomwolf's avatar
thomwolf committed
199
            batch = tuple(t.to(args.device) for t in batch)
200
201
202
203
204
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
205
            outputs = model(**inputs)
206
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
207
208

            if args.n_gpu > 1:
209
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
thomwolf's avatar
thomwolf committed
210
211
212
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
213
214
215
216
217
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
218
219

            tr_loss += loss.item()
220
            if (step + 1) % args.gradient_accumulation_steps == 0:
221
222
223
224
225
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
226
                optimizer.step()
thomwolf's avatar
thomwolf committed
227
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
228
                model.zero_grad()
thomwolf's avatar
thomwolf committed
229
                global_step += 1
thomwolf's avatar
thomwolf committed
230

thomwolf's avatar
thomwolf committed
231
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
232
                    logs = {}
233
234
235
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
236
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
237
                        for key, value in results.items():
238
                            eval_key = "eval_{}".format(key)
Juha Kiili's avatar
Juha Kiili committed
239
240
                            logs[eval_key] = value

241
242
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
243
244
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
thomwolf's avatar
thomwolf committed
245
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
246

Juha Kiili's avatar
Juha Kiili committed
247
248
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
249
                    print(json.dumps({**logs, **{"step": global_step}}))
thomwolf's avatar
thomwolf committed
250
251
252

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
253
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
thomwolf's avatar
thomwolf committed
254
255
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
256
257
258
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
259
                    model_to_save.save_pretrained(output_dir)
260
261
                    tokenizer.save_pretrained(output_dir)

262
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
263
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
264

265
266
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
267
268
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
269
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
270
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
271
272
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
273
            train_iterator.close()
thomwolf's avatar
thomwolf committed
274
            break
thomwolf's avatar
thomwolf committed
275

thomwolf's avatar
thomwolf committed
276
277
278
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
279
280
281
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
282
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
283
284
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
285
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
292
293

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
294
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
295
        # Note that DistributedSampler samples randomly
296
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
297
298
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
299
300
301
302
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
303
        # Eval!
thomwolf's avatar
thomwolf committed
304
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
305
306
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
307
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
308
309
310
311
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
312
            model.eval()
thomwolf's avatar
thomwolf committed
313
314
315
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
316
317
318
319
320
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
                        batch[2] if args.model_type in ["bert", "xlnet"] else None
                    )  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
321
322
323
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
324
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
325
326
327
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
328
                out_label_ids = inputs["labels"].detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
329
330
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
331
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
332
333
334
335
336
337
338
339
340

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

341
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
342
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
343
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
344
345
346
347
348
349
350
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
351
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
352
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
353
354
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
355
    processor = processors[task]()
356
357
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
358
359
360
361
362
363
364
365
366
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
367
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
368
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
369
370
        features = torch.load(cached_features_file)
    else:
371
372
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
373
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
374
            # HACK(label indices are swapped in RoBERTa pretrained model)
375
            label_list[1], label_list[2] = label_list[2], label_list[1]
376
377
378
379
380
381
382
383
384
385
386
387
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
388
        )
389
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
390
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
391
392
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
393
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
394
395
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

396
397
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
398
399
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
400
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
401
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
402
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
403
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
404

thomwolf's avatar
thomwolf committed
405
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
406
    return dataset
thomwolf's avatar
thomwolf committed
407
408


thomwolf's avatar
thomwolf committed
409
410
411
def main():
    parser = argparse.ArgumentParser()

412
    # Required parameters
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
448

449
    # Other parameters
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
thomwolf's avatar
thomwolf committed
537
538
    args = parser.parse_args()

539
540
541
542
543
544
545
546
547
548
549
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
550

thomwolf's avatar
thomwolf committed
551
552
553
554
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
555

thomwolf's avatar
thomwolf committed
556
557
558
559
560
561
562
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
563
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
564
565
566
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
567
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
568
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
569
570
571
    args.device = device

    # Setup logging
572
573
574
575
576
577
578
579
580
581
582
583
584
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
thomwolf's avatar
thomwolf committed
585

thomwolf's avatar
thomwolf committed
586
587
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
588
589

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
590
591
592
593
594
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
595
596
597
598
599
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
600
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
601

602
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
603
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
621
622

    if args.local_rank == 0:
623
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
624

thomwolf's avatar
thomwolf committed
625
    model.to(args.device)
thomwolf's avatar
thomwolf committed
626

thomwolf's avatar
thomwolf committed
627
628
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
629
    # Training
thomwolf's avatar
thomwolf committed
630
    if args.do_train:
631
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
632
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
633
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
634

thomwolf's avatar
thomwolf committed
635
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
636
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
637
638
639
640
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
641
        logger.info("Saving model checkpoint to %s", args.output_dir)
642
643
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
644
645
646
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
647
        model_to_save.save_pretrained(args.output_dir)
648
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
649
650

        # Good practice: save your training arguments together with the trained model
651
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
652

653
        # Load a trained model and vocabulary that you have fine-tuned
654
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
655
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
656
        model.to(args.device)
thomwolf's avatar
thomwolf committed
657

thomwolf's avatar
thomwolf committed
658
    # Evaluation
thomwolf's avatar
thomwolf committed
659
    results = {}
thomwolf's avatar
thomwolf committed
660
    if args.do_eval and args.local_rank in [-1, 0]:
661
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
662
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
663
        if args.eval_all_checkpoints:
664
665
666
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
667
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
668
669
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
670
671
672
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

thomwolf's avatar
thomwolf committed
673
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
674
            model.to(args.device)
675
            result = evaluate(args, model, tokenizer, prefix=prefix)
676
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
thomwolf's avatar
thomwolf committed
677
678
            results.update(result)

thomwolf's avatar
thomwolf committed
679
    return results
thomwolf's avatar
thomwolf committed
680
681
682
683


if __name__ == "__main__":
    main()