run_glue.py 20.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
from tqdm import tqdm, trange

import numpy as np

import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

from tensorboardX import SummaryWriter

35
36
37
38
39
from pytorch_transformers import (BertForSequenceClassification, XLNetForSequenceClassification,
                                  XLMForSequenceClassification, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
                                  XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
from pytorch_transformers import (BertTokenizer, XLNetTokenizer,
                                  XLMTokenizer)
thomwolf's avatar
thomwolf committed
40
from pytorch_transformers.optimization import BertAdam
thomwolf's avatar
thomwolf committed
41
42
43
44
45
46

from utils_glue import processors, output_modes, convert_examples_to_features, compute_metrics


logger = logging.getLogger(__name__)

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
ALL_MODELS = sum((tuple(m.keys()) for m in (BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
                                            XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
                                            XLM_PRETRAINED_MODEL_ARCHIVE_MAP)), ())

MODEL_CLASSES = {
    'bert': BertForSequenceClassification,
    'xlnet': XLNetForSequenceClassification,
    'xlm': XLMForSequenceClassification,
}

TOKENIZER_CLASSES = {
    'bert': BertTokenizer,
    'xlnet': XLNetTokenizer,
    'xlm': XLMTokenizer,
}
thomwolf's avatar
thomwolf committed
62

thomwolf's avatar
thomwolf committed
63
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
64
65
66
67
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
68
    args.train_batch_size = args.per_gpu_train_batch_size * args.n_gpu
69
70
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
71

thomwolf's avatar
thomwolf committed
72
73
74
75
76
    if args.max_steps > 0:
        num_train_optimization_steps = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
77
78

    # Prepare optimizer
thomwolf's avatar
thomwolf committed
79
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
80
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
81
82
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
83
        ]
thomwolf's avatar
thomwolf committed
84
85
    optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
                         t_total=num_train_optimization_steps, warmup=args.warmup_proportion)
thomwolf's avatar
thomwolf committed
86
87
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
88
            from apex import amp
thomwolf's avatar
thomwolf committed
89
90
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
91
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
92
93
94

    # Train!
    logger.info("***** Running training *****")
95
96
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
97
98
99
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
100
101
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
102
103

    global_step = 0
thomwolf's avatar
thomwolf committed
104
    tr_loss, logging_loss = 0.0, 0.0
105
    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
106
107
    for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
108
            model.train()
thomwolf's avatar
thomwolf committed
109
            batch = tuple(t.to(args.device) for t in batch)
110
111
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
thomwolf's avatar
thomwolf committed
112
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
113
114
                      'labels':         batch[3]}
            ouputs = model(**inputs)
thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
            loss = ouputs[0]

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
122
123
124
125
126
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
127
128
129
130
131
132

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
139
140
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    if args.local_rank == -1:  # Only evaluate on single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
141
142
143
144
            if args.max_steps > 0 and global_step > args.max_steps:
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            break
thomwolf's avatar
thomwolf committed
145
146
147
148

    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def evaluate(args, model, tokenizer):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        """ Evaluate the model """
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


def load_and_cache_examples(args, task, tokenizer, evaluate=False, overwrite_cache=False):
thomwolf's avatar
thomwolf committed
214
    processor = processors[task]()
215
216
217
218
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
219
        list(filter(None, args.model_name.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
220
221
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
222
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
223
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
224
225
        features = torch.load(cached_features_file)
    else:
226
227
228
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
229
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
230
            cls_token_at_end=bool(args.model_type in ['xlnet']),            # xlnet has a cls token at the end
231
            cls_token=tokenizer.cls_token,
232
233
234
235
236
            sep_token=tokenizer.sep_token,
            cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1,
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
237
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
238
239
            torch.save(features, cached_features_file)

240
241
242
243
244
245
246
247
248
249
250
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
251
252


thomwolf's avatar
thomwolf committed
253
254
255
256
257
258
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
259
260
    parser.add_argument("--model_name", default=None, type=str, required=True,
                        help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
261
    parser.add_argument("--task_name", default=None, type=str, required=True,
262
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
270
271
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
272
273
274
275
276
277
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
278
279
280

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU for training.")
thomwolf's avatar
thomwolf committed
281
282
283
284
285
286
    parser.add_argument("--eval_batch_size", default=8, type=int,
                        help="Total batch size for eval.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
287
288
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
289
290
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
291
292
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
293
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
294
                        help="Proportion of training with linear learning rate warmup (0.1 = 10%% of training).")
thomwolf's avatar
thomwolf committed
295
296
297

    parser.add_argument('--logging_steps', type=int, default=100,
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
298
299
300
301
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
302
303
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
304
305
306
307
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
308
309
310
311
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
312
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
313
314
315
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
316
317
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
318
319
320
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
332
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
333
334
335
336
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
337
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
338
339
340
341
    args.device = device

    # Setup logging
    logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
342
343
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
344
345
346
347
348

    # Setup seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
349
    if args.n_gpu > 0:
thomwolf's avatar
thomwolf committed
350
351
352
        torch.cuda.manual_seed_all(args.seed)

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
353
354
355
356
357
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
358
359
360
361
362
363
364
365
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

366
    args.model_type = args.model_name.lower().split('-')[0]
367
368
369
370
    tokenizer_class = TOKENIZER_CLASSES[args.model_type]
    model_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name, num_labels=num_labels)
thomwolf's avatar
thomwolf committed
371
372
373
374

    if args.local_rank == 0:
        torch.distributed.barrier()

thomwolf's avatar
thomwolf committed
375
    # Distributed and parrallel training
thomwolf's avatar
thomwolf committed
376
    model.to(args.device)
thomwolf's avatar
thomwolf committed
377
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
378
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
thomwolf's avatar
thomwolf committed
379
380
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
381
    elif args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
382
383
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
384
    # Training
thomwolf's avatar
thomwolf committed
385
    if args.do_train:
386
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
387
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
388
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
389
390


thomwolf's avatar
thomwolf committed
391
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
392
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
393
394
395
396
397
398
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
399
400
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
401
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
402
403

        # Good practice: save your training arguments together with the trained model
404
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
405

406
        # Load a trained model and vocabulary that you have fine-tuned
407
408
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
409
        model.to(args.device)
thomwolf's avatar
thomwolf committed
410

thomwolf's avatar
thomwolf committed
411
    # Evaluation
thomwolf's avatar
thomwolf committed
412
413
    if args.do_eval and args.local_rank in [-1, 0]:
        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
414

thomwolf's avatar
thomwolf committed
415
        return results
thomwolf's avatar
thomwolf committed
416
417
418
419


if __name__ == "__main__":
    main()