run_glue.py 29.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19


import argparse
thomwolf's avatar
thomwolf committed
20
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import json
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
import logging
import os
import random

import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
thomwolf's avatar
thomwolf committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
42
43
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
Hang Le's avatar
Hang Le committed
44
45
46
    FlaubertConfig,
    FlaubertForSequenceClassification,
    FlaubertTokenizer,
47
48
49
50
51
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
52
53
54
    XLMRobertaConfig,
    XLMRobertaForSequenceClassification,
    XLMRobertaTokenizer,
55
56
57
58
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
59
    get_linear_schedule_with_warmup,
60
)
61
from transformers import glue_compute_metrics as compute_metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
62
from transformers import glue_convert_examples_to_features as convert_examples_to_features
63
64
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
Aymeric Augustin's avatar
Aymeric Augustin committed
65
66
67
68


try:
    from torch.utils.tensorboard import SummaryWriter
69
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
70
71
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
72
73
74

logger = logging.getLogger(__name__)

75
76
77
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
78
79
80
81
82
83
84
85
        for conf in (
            BertConfig,
            XLNetConfig,
            XLMConfig,
            RobertaConfig,
            DistilBertConfig,
            AlbertConfig,
            XLMRobertaConfig,
Hang Le's avatar
Hang Le committed
86
            FlaubertConfig,
87
        )
88
89
90
    ),
    (),
)
91
92

MODEL_CLASSES = {
93
94
95
96
97
98
99
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
Hang Le's avatar
Hang Le committed
100
    "flaubert": (FlaubertConfig, FlaubertForSequenceClassification, FlaubertTokenizer),
101
}
thomwolf's avatar
thomwolf committed
102

thomwolf's avatar
thomwolf committed
103
104
105
106
107
108
109
110
111

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
112
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
113
114
115
116
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
117
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
118
119
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
120

thomwolf's avatar
thomwolf committed
121
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
122
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
123
124
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
125
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
126

thomwolf's avatar
thomwolf committed
127
    # Prepare optimizer and schedule (linear warmup and decay)
128
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
129
    optimizer_grouped_parameters = [
130
131
132
133
134
135
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Lysandre's avatar
Lysandre committed
136

thomwolf's avatar
thomwolf committed
137
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
138
139
140
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
141
142

    # Check if saved optimizer or scheduler states exist
143
144
145
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
146
        # Load in optimizer and scheduler states
147
148
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
149

thomwolf's avatar
thomwolf committed
150
151
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
152
            from apex import amp
thomwolf's avatar
thomwolf committed
153
154
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
155
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
156

157
158
159
160
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
161
162
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
163
        model = torch.nn.parallel.DistributedDataParallel(
164
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
165
        )
thomwolf's avatar
thomwolf committed
166

thomwolf's avatar
thomwolf committed
167
168
    # Train!
    logger.info("***** Running training *****")
169
170
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
171
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
172
173
174
175
176
177
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
178
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
179
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
180
181

    global_step = 0
182
183
184
185
186
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
187
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
188
189
190
191
192
193
194
195
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
196
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
197
    model.zero_grad()
198
    train_iterator = trange(
199
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
200
    )
201
    set_seed(args)  # Added here for reproductibility
thomwolf's avatar
thomwolf committed
202
203
204
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
205
206
207
208
209
210

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
211
            model.train()
thomwolf's avatar
thomwolf committed
212
            batch = tuple(t.to(args.device) for t in batch)
213
214
215
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
216
217
                    batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
218
            outputs = model(**inputs)
219
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
220
221

            if args.n_gpu > 1:
222
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
thomwolf's avatar
thomwolf committed
223
224
225
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
226
227
228
229
230
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
231
232

            tr_loss += loss.item()
233
            if (step + 1) % args.gradient_accumulation_steps == 0:
234
235
236
237
238
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
239
                optimizer.step()
thomwolf's avatar
thomwolf committed
240
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
241
                model.zero_grad()
thomwolf's avatar
thomwolf committed
242
                global_step += 1
thomwolf's avatar
thomwolf committed
243

thomwolf's avatar
thomwolf committed
244
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
245
                    logs = {}
246
247
248
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
249
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
250
                        for key, value in results.items():
251
                            eval_key = "eval_{}".format(key)
Juha Kiili's avatar
Juha Kiili committed
252
253
                            logs[eval_key] = value

254
255
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
256
257
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
thomwolf's avatar
thomwolf committed
258
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
259

Juha Kiili's avatar
Juha Kiili committed
260
261
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
262
                    print(json.dumps({**logs, **{"step": global_step}}))
thomwolf's avatar
thomwolf committed
263
264
265

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
266
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
thomwolf's avatar
thomwolf committed
267
268
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
269
270
271
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
272
                    model_to_save.save_pretrained(output_dir)
273
274
                    tokenizer.save_pretrained(output_dir)

275
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
276
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
277

278
279
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
280
281
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
282
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
283
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
284
285
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
286
            train_iterator.close()
thomwolf's avatar
thomwolf committed
287
            break
thomwolf's avatar
thomwolf committed
288

thomwolf's avatar
thomwolf committed
289
290
291
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
292
293
294
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
295
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
296
297
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
298
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
307
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
308
        # Note that DistributedSampler samples randomly
309
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
310
311
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
312
        # multi-gpu eval
313
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
314
315
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
316
        # Eval!
thomwolf's avatar
thomwolf committed
317
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
318
319
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
320
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
321
322
323
324
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
325
            model.eval()
thomwolf's avatar
thomwolf committed
326
327
328
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
329
330
331
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
332
333
                        batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                    )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
334
335
336
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
337
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
338
339
340
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
341
                out_label_ids = inputs["labels"].detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
342
343
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
344
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
345
346
347
348
349
350
351
352
353

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

354
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
355
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
356
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
357
358
359
360
361
362
363
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
364
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
365
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
366
367
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
368
    processor = processors[task]()
369
370
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
371
372
373
374
375
376
377
378
379
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
380
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
381
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
382
383
        features = torch.load(cached_features_file)
    else:
384
385
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
386
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
387
            # HACK(label indices are swapped in RoBERTa pretrained model)
388
            label_list[1], label_list[2] = label_list[2], label_list[1]
389
390
391
392
393
394
395
396
397
398
399
400
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
401
        )
402
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
403
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
404
405
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
406
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
407
408
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

409
410
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
411
412
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
413
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
414
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
415
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
416
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
417

thomwolf's avatar
thomwolf committed
418
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
419
    return dataset
thomwolf's avatar
thomwolf committed
420
421


thomwolf's avatar
thomwolf committed
422
423
424
def main():
    parser = argparse.ArgumentParser()

425
    # Required parameters
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
461

462
    # Other parameters
463
    parser.add_argument(
464
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
Hang Le's avatar
Hang Le committed
488
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
489
490
    )
    parser.add_argument(
491
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
492
493
494
    )

    parser.add_argument(
495
496
497
498
        "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
499
500
501
502
503
504
505
506
507
508
509
510
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
511
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
512
513
514
515
516
517
518
519
520
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

521
522
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
523
524
525
526
527
528
529
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
530
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
531
532
    )
    parser.add_argument(
533
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
thomwolf's avatar
thomwolf committed
552
553
    args = parser.parse_args()

554
555
556
557
558
559
560
561
562
563
564
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
565

thomwolf's avatar
thomwolf committed
566
567
568
569
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
570

thomwolf's avatar
thomwolf committed
571
572
573
574
575
576
577
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
578
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
579
580
581
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
582
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
583
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
584
585
586
    args.device = device

    # Setup logging
587
588
589
590
591
592
593
594
595
596
597
598
599
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
thomwolf's avatar
thomwolf committed
600

thomwolf's avatar
thomwolf committed
601
602
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
603
604

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
605
606
607
608
609
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
610
611
612
613
614
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
615
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
616

617
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
618
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
636
637

    if args.local_rank == 0:
638
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
639

thomwolf's avatar
thomwolf committed
640
    model.to(args.device)
thomwolf's avatar
thomwolf committed
641

thomwolf's avatar
thomwolf committed
642
643
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
644
    # Training
thomwolf's avatar
thomwolf committed
645
    if args.do_train:
646
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
647
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
648
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
649

thomwolf's avatar
thomwolf committed
650
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
651
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
652
653
654
655
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
656
        logger.info("Saving model checkpoint to %s", args.output_dir)
657
658
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
659
660
661
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
662
        model_to_save.save_pretrained(args.output_dir)
663
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
664
665

        # Good practice: save your training arguments together with the trained model
666
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
667

668
        # Load a trained model and vocabulary that you have fine-tuned
669
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
670
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
671
        model.to(args.device)
thomwolf's avatar
thomwolf committed
672

thomwolf's avatar
thomwolf committed
673
    # Evaluation
thomwolf's avatar
thomwolf committed
674
    results = {}
thomwolf's avatar
thomwolf committed
675
    if args.do_eval and args.local_rank in [-1, 0]:
676
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
677
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
678
        if args.eval_all_checkpoints:
679
680
681
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
682
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
683
684
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
685
686
687
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

thomwolf's avatar
thomwolf committed
688
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
689
            model.to(args.device)
690
            result = evaluate(args, model, tokenizer, prefix=prefix)
691
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
thomwolf's avatar
thomwolf committed
692
693
            results.update(result)

thomwolf's avatar
thomwolf committed
694
    return results
thomwolf's avatar
thomwolf committed
695
696
697
698


if __name__ == "__main__":
    main()